Tricarboxylic acid cycle related-metabolites and risk of atrial fibrillation and heart failure.

Metabolism

Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; University Hospital of Sant Joan de Reus, Nutrition Unit, Reus, Spain. Electronic address:

Published: December 2021

Background: Tricarboxylic acid (TCA) cycle deregulation may predispose to cardiovascular diseases, but the role of TCA cycle-related metabolites in the development of atrial fibrillation (AF) and heart failure (HF) remains unexplored. This study sought to investigate the association of TCA cycle-related metabolites with risk of AF and HF.

Methods: We used two nested case-control studies within the PREDIMED study. During a mean follow-up for about 10 years, 512 AF and 334 HF incident cases matched by age (±5 years), sex and recruitment center to 616 controls and 433 controls, respectively, were included in this study. Baseline plasma levels of citrate, aconitate, isocitrate, succinate, malate and d/l-2-hydroxyglutarate were measured with liquid chromatography-tandem mass spectrometry. Multivariable conditional logistic regression models were fitted to estimate odds ratios (OR) and 95% confidence intervals (95% CI) for metabolites and the risk of AF or HF. Potential confounders included smoking, family history of premature coronary heart disease, physical activity, alcohol intake, body mass index, intervention groups, dyslipidemia, hypertension, type 2 diabetes and medication use.

Results: Comparing extreme quartiles of metabolites, elevated levels of succinate, malate, citrate and d/l-2-hydroxyglutarate were associated with a higher risk of AF [OR (95% CI): 1.80 (1.21-2.67), 2.13 (1.45-3.13), 1.87 (1.25-2.81) and 1.95 (1.31-2.90), respectively]. One SD increase in aconitate was directly associated with AF risk [OR (95% CI): 1.16 (1.01-1.34)]. The corresponding ORs (95% CI) for HF comparing extreme quartiles of malate, aconitate, isocitrate and d/l-2-hydroxyglutarate were 2.15 (1.29-3.56), 2.16 (1.25-3.72), 2.63 (1.56-4.44) and 1.82 (1.10-3.04), respectively. These associations were confirmed in an internal validation, except for aconitate and AF.

Conclusion: These findings underscore the potential role of the TCA cycle in the pathogenesis of cardiac outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9206868PMC
http://dx.doi.org/10.1016/j.metabol.2021.154915DOI Listing

Publication Analysis

Top Keywords

tricarboxylic acid
8
atrial fibrillation
8
fibrillation heart
8
heart failure
8
tca cycle
8
role tca
8
tca cycle-related
8
cycle-related metabolites
8
metabolites risk
8
aconitate isocitrate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!