Understanding the separation of the correlated triplet pair state (TT) intermediate is critical for leveraging singlet fission to improve solar cell efficiency. This separation mechanism is dominated by two key interactions: (i) the exchange interaction () between the triplets which leads to the spin splitting of the biexciton state into (TT),(TT) and (TT) states, and (ii) the triplet-triplet energy transfer integral () which enables the formation of the spatially separated (but still spin entangled) state (T···T). We develop a simple ab initio technique to compute both the biexciton exchange () and biexciton transfer coupling. Our key findings reveal new conditions for successful correlated triplet pair state dissociation. The biexciton exchange interaction needs to be ferromagnetic or negligible to the triplet energy transfer for favorable dissociation. We also explore the effect of chromophore packing to reveal geometries where these conditions are achieved for tetracene.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.1c03217DOI Listing

Publication Analysis

Top Keywords

energy transfer
12
correlated triplet
12
triplet pair
12
triplet-triplet energy
8
transfer coupling
8
singlet fission
8
pair state
8
exchange interaction
8
biexciton exchange
8
revealing contest
4

Similar Publications

Inverse dose protraction effects of low-LET radiation: evidence and significance.

Mutat Res Rev Mutat Res

January 2025

Radiation Epidemiology Branch, National Cancer Institute, MD 20892-9778, USA; Faculty of Health, Science and Technology, Oxford Brookes University, Headington Campus, OX3 0BP, UK.

Biological effects of ionizing radiation vary not merely with total dose but also with temporal dose distribution. Sparing dose protraction effects, in which dose protraction reduces effects of radiation have widely been accepted and generally assumed in radiation protection, particularly for stochastic effects (e.g.

View Article and Find Full Text PDF

In this research, the photophysical properties of metformin hydrochloride (MF-HCl) were studied using spectroscopic and molecular docking techniques. The interaction between metformin hydrochloride and caffeine is essential for understanding the pharmacokinetics of metformin, particularly in populations with high caffeine consumption. Metformin is a first-line medication for managing type 2 diabetes, while caffeine is a widely consumed dietary stimulant.

View Article and Find Full Text PDF

Today, composite profiles of constant cross section are widely used in advanced engineering structures. The use of composite profiles in window and door structures can reduce thermal bridging and reduce energy consumption for heating and cooling. This article focuses on the production of new, thermoplastic-based structural pultruded profiles and their application in a PVC (polyvinylchloride) window structure as a reinforcement.

View Article and Find Full Text PDF

Integration of ordered porous materials for targeted three-component gas separation.

Nat Commun

January 2025

Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China.

Separation of multi-component mixtures in an energy-efficient manner has important practical impact in chemical industry but is highly challenging. Especially, targeted simultaneous removal of multiple impurities to purify the desired product in one-step separation process is an extremely difficult task. We introduced a pore integration strategy of modularizing ordered pore structures with specific functions for on-demand assembly to deal with complex multi-component separation systems, which are unattainable by each individual pore.

View Article and Find Full Text PDF

The simple and efficient conversion of carboxylic acids into structurally diverse organic molecules is highly desirable in chemical synthesis. This review covers recent developments in photocatalytic methodology for late-stage transformations of complex carboxylic acids and their derivatives enabled by radical decarboxylation and deoxygenation, highlighting some representative and significant contributions in this field. These advancements are categorized based on the reactivity patterns exhibited by the carboxylic acids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!