Cationic magnetic hydrogel microparticles with high retention on cell surfaces were prepared using a two-step procedure. Using these magnetic hydrogel microparticles, cells were clustered with each other, and cell aggregates were prepared effectively. Cross-linked poly(vinyl alcohol) (PVA) hydrogel microparticles containing iron oxide nanoparticles were prepared. The diameter of the microparticles was in the range of 200-500 nm. Water-soluble cationic polymers containing both trimethyl ammonium (TMA) groups and phenylboronic acid (PBA) groups were synthesized for the surface modification of the microparticles. To regulate the composition, electrically neutral phosphorylcholine groups were introduced into the polymer. Covalent bonds were formed between the hydroxy groups of PVA microparticles and PBA groups in the polymer. The surface zeta potential of the microparticles reflected the composition of the TMA groups. The particles responded to an external magnetic field and clustered rapidly. Microparticles were adsorbed on the floating cell surface and induced cell aggregation quickly when a magnetic field was applied. Under the most effective conditions, the diameter of the cell aggregates increased to approximately 1 mm after 30 min. Denser cell aggregates were formed by the synergistic effects of the magnetic field and the properties of the microparticles. The formed cell aggregates continued to grow for more than 4 days under an applied magnetic field, indicating that the ability of the cells in the aggregate to proliferate was well maintained.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsbiomaterials.1c01150 | DOI Listing |
Bioact Mater
April 2025
Joint Centre of Translational Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
Hydrogel-based patches have demonstrated their values in diabetic wounds repair, particularly those intelligent dressings with continuous repair promoting and monitoring capabilities. Here, we propose a type of dual physiological responsive structural color particles for wound repair. The particles are composed of a hyaluronic acid methacryloyl (HAMA)-sodium alginate (Alg) inverse opal scaffold, filled with oxidized dextran (ODex)/quaternized chitosan (QCS) hydrogel.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Department of MetaBioHealth, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea. Electronic address:
Tendons are anisotropic tissues with exceptional mechanical properties, which result from their unique anisotropic structure and mechanical behavior under stress. While research has focused on replicating anisotropic structures and mechanical properties of tendons, fewer studies have examined their specific mechanical behaviors. Here, we present a simple method for creating calcium-crosslinked alginate-based double-network hydrogels that mimics tendons by exhibiting anisotropic structure, high mechanical strength and toughness, and a distinctive "toe region" when stretched.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA.
Anterior cervical spine surgeries are often complicated by difficulty swallowing due to local postoperative swelling, pain, scarring, and tissue dysfunction. These postoperative events lead to systemic steroid and narcotic use. Local, sustained drug delivery may address these problems, but current materials are unsafe for tight surgical spaces due to high biomaterial swelling, especially upon degradation.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
Tissues form during development through mechanical compaction of their extracellular matrix (ECM) and shape morphing, processes that result in complex-shaped structures that contribute to tissue function. While observed in vivo, control over these processes in vitro to understand both tissue development and guide tissue formation has remained challenging. Here, we use combinations of mesenchymal stromal cell spheroids and hydrogel microparticles (microgels) with varied hydrolytic stability to fabricate programmable and dynamic granular composites that control compaction and tissue formation over time.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
During the COVID-19 pandemic, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) has been recognized as the most reliable diagnostic tool. However, there is a need to develop multiplexed assays capable of analyzing multiple genes simultaneously to expand its application. To address this, a multiplexed RT-qPCR using a double emulsion (DE)-based carrier and a polymer microparticle reactor, termed primer-incorporated network tailored with Taqman probe (TaqPIN) is developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!