SARS-CoV-2 is causing the coronavirus disease 2019 (COVID-19) pandemic, for which effective pharmacological therapies are needed. SARS-CoV-2 induces a shift of the host cell metabolism towards glycolysis, and the glycolysis inhibitor 2-deoxy-d-glucose (2DG), which interferes with SARS-CoV-2 infection, is under development for the treatment of COVID-19 patients. The glycolytic pathway generates intermediates that supply the non-oxidative branch of the pentose phosphate pathway (PPP). In this study, the analysis of proteomics data indicated increased transketolase (TKT) levels in SARS-CoV-2-infected cells, suggesting that a role is played by the non-oxidative PPP. In agreement, the TKT inhibitor benfooxythiamine (BOT) inhibited SARS-CoV-2 replication and increased the anti-SARS-CoV-2 activity of 2DG. In conclusion, SARS-CoV-2 infection is associated with changes in the regulation of the PPP. The TKT inhibitor BOT inhibited SARS-CoV-2 replication and increased the activity of the glycolysis inhibitor 2DG. Notably, metabolic drugs like BOT and 2DG may also interfere with COVID-19-associated immunopathology by modifying the metabolism of immune cells in addition to inhibiting SARS-CoV-2 replication. Hence, they may improve COVID-19 therapy outcomes by exerting antiviral and immunomodulatory effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540749 | PMC |
http://dx.doi.org/10.3390/metabo11100699 | DOI Listing |
Unlabelled: SARS coronavirus 2 (SARS-CoV-2) non-structural protein 14 (Nsp14) possesses an N-terminal exonuclease (ExoN) domain that provides a proofreading function for the viral RNA-dependent RNA polymerase and a C-terminal N7-methyltransferase (N7-MTase) domain that methylates viral mRNA caps. Nsp14 also modulates host functions. This includes the activation of NF-κB and downregulation of interferon alpha/beta receptor 1 (IFNAR1).
View Article and Find Full Text PDFPNAS Nexus
December 2024
Department of Ophthalmology and Stein Eye Institute, University of California, Los Angeles, CA 90095, USA.
As the SARS-CoV-2 coronavirus continues to evolve and infect the global population, many individuals are likely to suffer from post-acute sequelae of SARS-CoV-2 infection (PASC). Manifestations of PASC include vision symptoms, but little is known about the ability of SARS-CoV-2 to infect and impact the retinal cells. Here, we demonstrate that SARS-CoV-2 can infect and perturb the retinal pigment epithelium (RPE) in vivo, after intranasal inoculation of a transgenic mouse model of SARS-CoV-2 infection, and in cell culture.
View Article and Find Full Text PDFFront Cell Infect Microbiol
December 2024
Biology Department, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan.
Following COVID-19 outbreak with its unprecedented effect on the entire world, the interest to the coronaviruses increased. The causative agent of the COVID-19, severe acute respiratory syndrome coronavirus - 2 (SARS-CoV-2) is one of seven coronaviruses that is pathogenic to humans. Others include SARS-CoV, MERS-CoV, HCoV-HKU1, HCoV-OC43, HCoV-NL63 and HCoV-229E.
View Article and Find Full Text PDFInfect Disord Drug Targets
December 2024
Department of Immunology, Faculty of Medical Sciences, Tarbiat Modarres University, Tehran, Iran.
Since the outbreak of coronavirus disease 2019 (COVID-19) in late 2019 and early 2020, the identification of drugs to control severe acute respiratory syndrome coro-navirus 2 (SARS-CoV-2) infection and its symptoms has been a pressing focus of research. Cytokine storm and acute respiratory distress syndrome (ARDS) are the leading causes of mortality following infection. In this review, we discuss immune pathogenesis and four medications, including Remdesivir, Tocilizumab, Dexamethasone, and Annual SZ for COVID-19.
View Article and Find Full Text PDFCell Rep
December 2024
Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA. Electronic address:
SARS-CoV-2 emerged, and continues to evolve, to efficiently infect humans worldwide. SARS-CoV-2 evades early innate recognition, interferon signaling occurring only in bystander cells. How the virus continues to evolve in the face of innate responses has important consequences, but the pathways involved are incompletely understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!