Approaching Industrially Relevant Current Densities for Hydrogen Oxidation with a Bioinspired Molecular Catalytic Material.

J Am Chem Soc

Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 rue des Martyrs F-38054 Grenoble Cedex, France.

Published: November 2021

Integration of efficient platinum-group-metal (PGM)-free catalysts to fuel cells and electrolyzers is a prerequisite to their large-scale deployment. Here, we describe the development of a molecular-based anode for the hydrogen oxidation reaction (HOR) through noncovalent integration of a DuBois type Ni bioinspired molecular catalyst at the surface of a carbon nanotube modified gas diffusion layer. This mild immobilization strategy enabled us to gain high control over the loading in catalytic sites. Additionally, through the adjustment of the hydration level of the active layer, a new record current density of 214 ± 20 mA cm could be reached at 0.4 V vs RHE with the PGM-free anode, at 25 °C. Near industrially relevant current densities were obtained at 55 °C with 150 ± 20 and 395 ± 30 mA cm at 0.1 and 0.4 V overpotentials, respectively. These results further demonstrate the relevance of such molecular approaches for the development of electrocatalytic platforms for energy conversion.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.1c07093DOI Listing

Publication Analysis

Top Keywords

industrially relevant
8
relevant current
8
current densities
8
hydrogen oxidation
8
bioinspired molecular
8
approaching industrially
4
densities hydrogen
4
oxidation bioinspired
4
molecular catalytic
4
catalytic material
4

Similar Publications

Background: Use of health applications (apps) to support healthy lifestyles has intensified. Different app features may support effectiveness, including gamification defined as the use of game elements in a non-game situation. Whether health apps with gamification can impact behaviour change and cardiometabolic risk factors remains unknown.

View Article and Find Full Text PDF

Purpose: Diabetes mellitus is a global health challenge that leads to severe complications, negatively impacting overall health, life expectancy, and quality of life. Herbal medicines, valued for their accessibility and therapeutic benefits with minimal side effects, have been promoted as potential treatments. Managing conditions like diabetes, characterized by free radical production and cytokine-driven inflammation, is vital due to the active components in plants that exert direct pharmacological effects.

View Article and Find Full Text PDF

The Uluzzian and Châtelperronian: No Technological Affinity in a Shared Chronological Framework.

J Paleolit Archaeol

January 2025

Human Origins Research Unit, Faculty of Archaeology, Leiden University, Einsteinweg 2, 2333 CC Leiden, The Netherlands.

Unlabelled: The Châtelperronian and Uluzzian techno-complexes are identified in western Europe in the same stratigraphic position, between the late Middle Palaeolithic and other Upper Palaeolithic assemblages. Both industries include retouched artefacts with abrupt retouch and arched backs, and radiometric dating indicates that these two technocomplexes belong to the same window of time. Here, we provide a detailed, qualitative technological comparison of two Châtelperronian and two Uluzzian lithic assemblages based on a collaborative, first-hand examination of these collections.

View Article and Find Full Text PDF

[Purpose] The safety and physiological effects of combined training with breathing resistance and sustained physical exertion in middle-aged and older adults remain unclear. This pilot study investigated the safety and physiological benefits of this training method in older adults. [Participants and Methods] Participants aged 55-75 without respiratory, circulatory, or metabolic diseases were randomly divided into two groups: a combined breathing and physical training group and a control group.

View Article and Find Full Text PDF

Background: Lung cancer screening recommendations employ annual frequency for eligible individuals, despite evidence that it may not be universally optimal. The impact of imposing a structure on the screening frequency remains unknown. The ENGAGE framework, a validated framework that offers fully dynamic, analytically optimal, personalised lung cancer screening recommendations, could be used to assess the impact of screening structure on the effectiveness and efficiency of lung cancer screening.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!