The creation of biologically inspired artificial membranes on substrates with custom size and in close proximity to each other not only provides a platform to study biological processes in a simplified manner, but they also constitute building blocks for chemical or biological sensors integrated in microfluidic devices. Scanning probe lithography tools such as dip-pen nanolithography (DPN) have opened a new paradigm in this regard, although they possess some inherent drawbacks like the need to operate in air environment or the limited choice of lipids that can be patterned. In this work, we propose the use of the fluid force microscopy (FluidFM) technology to fabricate biomimetic membranes without losing the multiplexing capability of DPN but gaining flexibility in lipid inks and patterning environment. We shed light on the driving mechanisms of the FluidFM-mediated lithography processes in air and liquid. The obtained results should prompt the creation of more realistic biomimetic membranes with arbitrary complex phospholipid mixtures, cholesterol, and potential functional membrane proteins directly patterned in physiological environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c15166 | DOI Listing |
J Lipid Res
January 2025
Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Bielefeld, Germany. Electronic address:
The environmental pollutant cadmium (Cd) poses a threat to human health through consumption of contaminated foodstuffs culminating in chronic nephrotoxicity. Mitochondrial dysfunction and excessive reactive oxygen species (ROS) are key to Cd cellular toxicity. Cd-lipid interactions have been less considered.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
Coating biological membranes onto biomimetic nanocarriers improves biocompatibility, prolongs circulation, and enhances targeted delivery for cancer precision medicine. To better understand the biodistribution profiles of these biomimetic nanosystems, molecular imaging techniques, including optical imaging, radionuclide imaging, magnetic resonance imaging, and ultrasound imaging, have been widely employed for in vivo tracking and dynamic imaging. Here in this review, we delve into the profound role of these imaging modalities in visualizing changes in the tumor microenvironment, particularly in monitoring oxygen consumption and immune response dynamics, highlighting their potential to improve cancer therapies.
View Article and Find Full Text PDFAm J Sports Med
January 2025
Department of Orthopaedic Surgery/Sports Medicine Center, Southwest Hospital, Army Medical University, Chongqing, China.
Background: The challenge of achieving effective tendon-to-bone healing remains a significant concern in sports medicine, necessitating further exploration. Biomimetic electrospun nanomaterials present promising avenues for improving this critical healing process.
Purpose: To investigate the biological efficacy of a novel aligned-to-random PLGA/Col1-PLGA/nHA bilayer electrospun nanofiber membrane in facilitating tendon-to-bone healing.
ACS Nano
January 2025
Department of Infectious Diseases, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
Nonantibiotic strategies are urgently needed to treat acute drug-resistant bacterial pneumonia. Recently, nanomaterial-mediated bacterial cuproptosis has arisen widespread interest due to its superiority against antibiotic resistance. However, it may also cause indiscriminate and irreversible damage to healthy cells.
View Article and Find Full Text PDFChemistry
January 2025
State Key Laboratory of NBC Protection for Civilian, State Key Laboratory of NBC Protection for Civilian,, Beijing, CHINA.
The root ducts play an important role in the plant's transport of nutrients from the soil. Based on the selective transport characteristics of plant roots, amino pillar[6]arene bionic porous root sub-nano channel membrane were constructed to remove Imazamox. Imazamox (IM) is an effective imidazolinone herbicide frequently utilized in soybean fields to control a wide range of annual grasses and broad-leaved weeds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!