A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hybrid Electrolyte with Dual-Anion-Aggregated Solvation Sheath for Stabilizing High-Voltage Lithium-Metal Batteries. | LitMetric

Hybrid Electrolyte with Dual-Anion-Aggregated Solvation Sheath for Stabilizing High-Voltage Lithium-Metal Batteries.

Adv Mater

Shenzhen Key Laboratory on Power Battery Safety and Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.

Published: December 2021

Lithium (Li)-metal batteries (LMBs) with high-voltage cathodes and limited Li-metal anodes are crucial to realizing high-energy storage. However, functional electrolytes that are compatible with both high-voltage cathodes and Li anodes are required for their developments. In this study, the use of a moderate-concentration LiPF and LiNO dual-salt electrolyte composed of ester and ether co-solvents (fluoroethylene carbonate/dimethoxyethane, FEC/DME), which forms a unique Li solvation with aggregated dual anions, that is, PF and NO , is proposed to stabilize high-voltage LMBs. Mechanistic studies reveal that such a solvation sheath improves the Li plating/stripping kinetics and induces the generation of a solid electrolyte interphase (SEI) layer with gradient heterostructure and high Young's modulus on the anode, and a thin and robust cathode electrolyte interface (CEI) film. Therefore, this novel electrolyte enables colossal Li deposits with a high Coulombic efficiency (≈98.9%) for 450 cycles at 0.5 mA cm . The as-assembled LiǁLiNi Co Al O full batteries deliver an excellent lifespan and capacity retention at 4.3 V with a rigid negative-to-positive capacity ratio. This electrolyte system with a dual-anion-aggregated solvation structure provides insights into the interfacial chemistries through solvation regulation for high-voltage LMBs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202007945DOI Listing

Publication Analysis

Top Keywords

dual-anion-aggregated solvation
8
solvation sheath
8
high-voltage cathodes
8
high-voltage lmbs
8
solvation
5
high-voltage
5
electrolyte
5
hybrid electrolyte
4
electrolyte dual-anion-aggregated
4
sheath stabilizing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!