RNA viral vectors that replicate without DNA intermediates are attractive platforms for manipulation of cells for biomedical and veterinary applications because they have minimal risk of chromosomal integration. Vesicular stomatitis virus (VSV) vectors are among the most well-studied RNA viral vectors due to their low pathogenicity to humans and ability to express transgenes at high levels for weeks to months. However, their applications have been mostly limited to oncolytic and vaccine vectors due to their cytopathogenicity. We discovered two mutations in the VSV vector that synergistically confer improved stability in mouse embryonic stem cells (ESCs) with markedly lower cytopathic effects. We also demonstrated chemical regulation of transgene expression through embedded riboswitches. The ESCs infected with the mutant vector were shown to maintain pluripotency. This new vector sets the stage for precise regulation of gene expression in ESCs to produce a variety of differentiated cells without chromosomal alteration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssynbio.1c00214 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!