Plantation ecosystems are more vulnerable than natural ones to global climate change. Using the dendrochronology method, we established tree-ring width chronologies of distributed in the semi-arid region of Northeast China. We examined its growth dynamics, analyzed the relationship between radical growth and climate factors, and explored the effects of global warming on the growth and distribution of . The results showed that tree-ring width chronologies of were negatively correlated with mean temperature of growing season (May-July), and positively correlated with precipitation and Palmer drought severity index (PDSI) in the early growing season (April) and in the growing season (May-July). Water availability was the main limiting factor for the radial growth of . Along the increasing precipitation gradient from southwest to northeast, tree growth became more sensitive to annual mean temperature, and the correlation with annual precipitation shifted from positive to negative, indicating that tree growth in the relative arid area (southwest of the study area) was more severely restricted by water availability. Drought stress caused by climate warming resulted in growth declines at some sites in the southwest area. With the continuous warming-drying climate, the distribution boundary of in the study area would shrink locally, with the suitable growth boundary moving northward.

Download full-text PDF

Source
http://dx.doi.org/10.13287/j.1001-9332.202110.034DOI Listing

Publication Analysis

Top Keywords

growing season
12
growth
9
radial growth
8
tree-ring width
8
width chronologies
8
warming growth
8
season may-july
8
water availability
8
tree growth
8
study area
8

Similar Publications

Molecular diversity and genetic potential of new maize inbred lines across varying sowing conditions in arid environment.

Sci Rep

January 2025

Department of Environmental Management, Institute of Environmental Engineering, People's Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., 117198, Moscow, Russian Federation.

Developing high-yielding and resilient maize hybrids is essential to ensure its sustainable production with the ongoing challenges of considerable shifts in global climate. This study aimed to explore genetic diversity among exotic and local maize inbred lines, evaluate their combining ability, understand the genetic mechanisms influencing ear characteristics and grain yield, and identify superior hybrids suited for timely and late sowing conditions. Seven local and exotic maize inbred lines were genotyped using SSR (Simple Sequence Repeat) markers to assess their genetic diversity.

View Article and Find Full Text PDF

Impacts of different intensities of commercial Sphagnum moss extraction on CO fluxes in a northern Patagonia peatland.

Sci Total Environ

January 2025

Department of Forest Sciences, Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Temuco, Chile.

Peatlands are key ecosystems for global climate regulation because they provide the most efficient carbon sink on the planet. Despite this, they have been widely degraded by various anthropogenic disturbances, causing imbalances in their ecological functioning. A more recent type of disturbance corresponds to the commercial extraction of Sphagnum mosses, which has been carried out in temperate peatlands distributed in Australasia and Patagonia.

View Article and Find Full Text PDF

Sweetpotato ( Lam.) is grown worldwide and is a staple food in many countries. One of the main constraints for sweetpotato production is cultivar decline, caused by the accumulation of viruses and subsequent losses of storage root yield and quality over years of vegetative propagation.

View Article and Find Full Text PDF

Terrestrial vegetation is a key component of the Earth system, regulating the exchange of carbon, water, and energy between land and atmosphere. Vegetation affects soil moisture dynamics by absorbing and transpiring soil water, thus modulating land-atmosphere interactions. Moreover, changes in vegetation structure (e.

View Article and Find Full Text PDF

Increasing evidence demonstrates a robust link between environmental pollutants and allergic reactions, with air and indoor pollution exacerbating respiratory allergies and climate change intensifying seasonal allergies. Comprehensive action, including government regulations, public awareness, and individual efforts, is essential to mitigate pollution's impact on allergies and safeguard public health and ecological balance. Recent findings indicate a strong correlation between environmental pollutants and allergic reactions, with air pollution from vehicular emissions and industrial activities exacerbating respiratory allergies like asthma and allergic rhinitis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!