Incorporating nature-based solutions (NBSs) into the built environment supports the ongoing sustainability challenge as emphasized in the United Nations' Sustainable Development Goals (SDGs) and has particular relevance for SDG Goal #11 (Sustainable cities and communities), which seeks greater efficiencies in urban planning and management practices that address aging infrastructure and ongoing air, water, and soil pollution. The short communications and research articles in this special series exemplify many of these aspects, highlighting the application of NBSs and showcasing the latest environmental research and policy solutions to support this. Nature-based solutions in the built environment aim to promote the understanding of the transdisciplinary nature of NBSs and enhance the global awareness of the value of NBSs by providing a diversity of solutions to illustrate the positive economic, social, and environmental benefits of NBSs in the built environment. Integr Environ Assess Manag 2022;18:39-41. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

Download full-text PDF

Source
http://dx.doi.org/10.1002/ieam.4540DOI Listing

Publication Analysis

Top Keywords

nature-based solutions
12
special series
8
solutions built
8
nbss built
8
built environment
8
solutions
5
nbss
5
introduction special
4
series "incorporating
4
"incorporating nature-based
4

Similar Publications

In the Mediterranean basin, urban forests are widely recognized as essential landscape components, playing a key role in nature-based solutions by enhancing environmental quality and providing a range of ecosystem services. The selection of woody plant species for afforestation and reforestation should prioritize native species that align with the biogeographical and ecological characteristics of the planting sites. Among these, L.

View Article and Find Full Text PDF

Assessing the potential effects of climate change on the morphodynamics of the tropical coral reef islands in the Gulf of Mannar, Indian Ocean.

J Environ Manage

January 2025

Physical Oceanography Division, CSIR- National Institute of Oceanography, Dona Paula, 403 004, Goa, India; School of Oceanography, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India. Electronic address:

Low-lying and small tropical coral reef islands around the world are extremely vulnerable to the effects of global environmental change caused by the combination of anthropogenic climate change and escalating extreme hydrodynamic events. Erosion and inundation are anticipated to physically destabilize the tropical coral reef islands, rendering them uninhabitable within the next century. Therefore, it is crucial to assess the repercussions of these hazardous events on the delicate reef island ecosystem in order to conserve and ensure sustainable management.

View Article and Find Full Text PDF

Ex situ living plant collections play a crucial role in providing nature-based solutions to twenty-first century global challenges. However, the complex dynamics of these artificial ecosystems are poorly quantified and understood, affecting biodiversity storage, conservation and utilization. To evaluate the management of ex situ plant diversity, we analysed a century of data comprising 2.

View Article and Find Full Text PDF

Perfluoroalkyl and polyfluoroalkyl substances (PFAS) and herbicides are important persistent contaminants that require specific management. A variety of herbicides is stored in fluorinated containers in the form of aquatic solutions. In such environments, the simultaneous release of PFAS and herbicides takes place.

View Article and Find Full Text PDF

Towards stormwater reuse risk management plans: Methodology and catchment scale evaluation of QMRA.

Sci Total Environ

January 2025

Department of Science and Engineering of Materials, Environment and Urban Planning - SIMAU, Polytechnic University of Marche, via Brecce Bianche 12, 60131 Ancona, Italy.

The reuse of stormwater represents a potential option for meeting water demands in water stressed regions as well as preventing and mitigating diffuse pollution of receiving water bodies. Particularly, the elaboration of a risk management plan for stormwater reuse may help to understand associated environmental and public health risks and design fit-for-purpose water treatment processes. In this work, it is presented an innovative methodology to perform quantitative microbial risk assessment (QMRA) for stormwater reuse by using data simulated by SWMM software.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!