Genomic imprinting occurs in therian mammals and is a phenomenon whereby the two alleles of a gene are differentially expressed, based on the sex of the parent from whom the alleles were inherited. The allelic differences in expression are the consequence of different epigenetic modifications that are established in the sperm or oocyte during gametogenesis and transmitted at fertilization to offspring. A small minority of genes is regulated in this way but they have important biological functions, and aberrant regulation of imprinted genes contributes to disease aetiology in humans and other animals. The factors driving the evolution of imprinted genes are also of considerable interest, as these genes appear to forego the benefits of diploidy. To broaden the phylogenetic analysis of genomic imprinting, we began a study of imprinted genes in the domestic dog, Canis familiaris. In this report, we show that canine IGF2 and H19 are imprinted, with parent-of origin-dependent monoallelic expression patterns in neonatal umbilical cord. We identify a putative imprint control region associated with the genes, and provide evidence for differential methylation of this region in a somatic tissue (umbilical cord) and for its hypermethylation in the male germline. Canis familiaris is fast becoming a highly informative system for elucidating disease processes and evolution, and the study of imprinted genes in this species may help in understanding how these genes contribute to the generation of morphological and behavioral diversity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/age.13148 | DOI Listing |
Hum Mol Genet
January 2025
Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park, Earlham Road, Norwich NR4 6PN, United Kingdom.
Genomic imprinting is the parent-of-origin dependent monoallelic expression of genes often associated with regions of germline-derived DNA methylation that are maintained as differentially methylated regions (gDMRs) in somatic tissues. This form of epigenetic regulation is highly conserved in mammals and is thought to have co-evolved with placentation. Tissue-specific gDMRs have been identified in human placenta, suggesting that species-specific imprinting dependent on unorthodox epigenetic establishment or maintenance may be more widespread than previously anticipated.
View Article and Find Full Text PDFPLoS Genet
January 2025
Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America.
Genomic imprinting is an epigenetic process that results in parent-of-origin effects on mammalian development and growth. Research on genomic imprinting in domesticated animals has lagged due to a primary focus on orthologs of mouse and human imprinted genes. This emphasis has limited the discovery of imprinted genes specific to livestock.
View Article and Find Full Text PDFNat Commun
January 2025
Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
The root of asthma can be linked to early life, with prenatal environments influencing risk. We investigate the effects of maternal asthma on the offspring's lungs during fetal and adult life. Adult offspring of asthmatic mothers show an increase in lung group 2 innate lymphoid cell (ILC2) number and function with allergen-induced lung inflammation.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA.
DNA methylation (DNAm) regulates gene expression and genomic imprinting. This study aimed to investigate the effect of gastrointestinal (GI) nematode infection on host DNAm. Helminth-free Holstein steers were either infected with (the brown stomach worm) or given tap water only as a control.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
Genomic imprinting, the parent-of-origin-specific gene expression, plays a pivotal role in growth regulation and is often dysregulated in cancer. However, screening for imprinting is complicated by its cell-type specificity, which bulk RNA-seq cannot capture. On the other hand, large-scale single-cell RNA-seq (scRNA-seq) often lacks transcript-level detail and is cost-prohibitive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!