Behavior is one of the major architects of evolution: by behaviorally modifying how they interact with their environments, organisms can influence natural selection, amplifying it in some cases and dampening it in others. In one of the earliest issues of Evolution, Charles Bogert proposed that regulatory behaviors (namely thermoregulation) shield organisms from selection and limit physiological evolution. Here, I trace the history surrounding the origin of this concept (now known as the "Bogert effect" or "behavioral inertia"), and its implications for physiological and evolutionary research throughout the 20th century. A key follow-up study in the early 21st century galvanized renewed interest in Bogert's classic ideas, and established a focus on slowdowns in the rate of evolution in response to regulatory behaviors. I illustrate recent progress on the Bogert effect in evolutionary research, and discuss the ecological variables that predict whether and how strongly the phenomenon unfolds. Based on these discoveries, I provide hypotheses for the Bogert effect across several scales: patterns of trait evolution within and among groups of species, spatial effects on the phenomenon, and its importance for speciation. I also discuss the inherent link between behavioral inertia and behavioral drive through an empirical case study linking the phenomena. Modern comparative approaches can help put the macroevolutionary implications of behavioral buffering to the test: I describe progress to date, and areas ripe for future investigation. Despite many advances, bridging microevolutionary processes with macroevolutionary patterns remains a persistent gap in our understanding of the Bogert effect, leaving wide open many avenues for deeper exploration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/evo.14388 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!