Chimeric antigen receptor (CAR)-modified T cells targeting CD19 demonstrate unparalleled responses in B cell malignancies. However, high tumor burden limits clinical efficacy and increases the risk of cytokine release syndrome and neurotoxicity, which is associated with over-activation of the CAR-T cells. The hinge domain plays an important role in the function of CAR-T cells. We hypothesized that deletion of glycine, an amino acid with good flexibility, may reduce the flexibility of the hinge region, thereby mitigating CAR-T cell over-activation. This study involved generating a novel CAR by deletion of two consecutive glycine residues in the CD8 hinge domain of second-generation (2nd) CAR, thereafter named 2nd-GG CAR. The 2nd-GG CAR-T cells showed similar efficacy of CAR expression but lower hinge flexibility, and its protein affinity to CD19 protein was lower than that of 2nd CAR-T cells. Compared to the 2nd CAR-T cells, 2nd-GG CAR-T cells reduced proinflammatory cytokine secretion without diminishing the specific cytotoxicity toward tumor cells . Furthermore, 2nd-GG CAR-T cells prolonged overall survival in an immunodeficient mouse model bearing NALM-6 when tumor burden was high. This study demonstrated that a lower-flexibility of CD8α hinge improved survival under high tumor burden and reduced proinflammatory cytokines in preclinical studies. While there is potential for improved safety and efficacy, yet this needs validation with clinical trials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8524077 | PMC |
http://dx.doi.org/10.3389/fimmu.2021.724211 | DOI Listing |
Clin Cancer Res
January 2025
Bristol-Myers Squibb (United States), Summit, New Jersey, United States.
Purpose: Orvacabtagene autoleucel (orva-cel; JCARH125), a CAR T-cell therapy targeting B-cell maturation antigen (BCMA), was evaluated in relapsed/refractory multiple myeloma (RRMM) patients in the EVOLVE phase 1/2 study (NCT03430011). We applied a modified piecewise model to characterize orva-cel transgene kinetics and assessed the impact of various covariates on its pharmacokinetics (PK).
Experimental Design: The population PK analysis included 159 patients from the EVOLVE study.
Front Immunol
January 2025
Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States.
Chimeric antigen receptor (CAR) T cell therapy has revolutionized the treatment of hematologic malignancies, achieving remarkable clinical success with FDA-approved therapies targeting CD19 and BCMA. However, the extension of these successes to solid tumors remains limited due to several intrinsic challenges, including antigen heterogeneity and immunosuppressive tumor microenvironments. In this review, we provide a comprehensive overview of recent advances in CAR T cell therapy aimed at overcoming these obstacles.
View Article and Find Full Text PDFMol Cancer Ther
January 2025
Tongji Hospital, Wuhan, Hubei, China.
Myeloid malignancies include various types of cancers that arise from abnormal development or proliferation of myeloid cells within the bone marrow. Chimeric antigen receptor (CAR) T cell treatments, which show great potential for B cell and plasma cell cancers, face major challenges when used for myeloid malignancies. CAR natural killer (NK) cell-based immunotherapy encounters several challenges in treating myeloid cancers, including: (1) poor gene transfer efficiency and expansion platforms in vitro, (2) limited proliferation and persistence in vivo, (3) antigenic heterogeneity, and (4) an immunosuppressive tumor microenvironment.
View Article and Find Full Text PDFNat Med
January 2025
Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Long-term risks of gene therapy are not fully understood. In this study, we evaluated safety outcomes in 783 patients over more than 2,200 total patient-years of observation from 38 T cell therapy trials. The trials employed integrating gammaretroviral or lentiviral vectors to deliver engineered receptors to target HIV-1 infection or cancer.
View Article and Find Full Text PDFLupus Sci Med
January 2025
Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands.
CD19-directed chimeric antigen receptor (CAR) T-cell therapy, originally developed for haematological malignancies, has recently emerged as a promising therapy for patients with autoimmune diseases. By selectively depleting CD19-positive B-cells, this therapy brings a new approach in resetting immune dysregulation and potentially providing long-term remission for patients with a refractory disease. Recent reports have highlighted its effectiveness in conditions such as SLE, systemic sclerosis and myositis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!