The study of the pedogenic process in response to natural evolution, gradual anthropogenic shifts and engineering upheavals is of great significance for understanding, utilizing and transforming nature in the future. Although scholars have considered anthropic activities to be an important factor affecting pedogenesis, research on how and how much anthropic activities influence the soil-forming process is scant. This paper was conducted to analyse pedogenic characteristics dominated by anthropic activities. In this study, the parent materials and soils undergoing natural evolution (NE), tillage perturbation (TP) and engineering perturbation (EP) were selected as research objects. The genetic characteristics of soils undergoing NE, TP and EP are investigated mainly from three aspects: soil profile macromorphological characteristics, soil physical and chemical properties and chemical weathering characteristics. The results indicated that the influence of anthropic activities (TP and EP) on the process of pedogenesis is complicated. First, compared with NE, TP decreases the thickness of topsoil from 22.2 to 21.2 cm, while EP increases the thickness of topsoil from 22.2 to 23.2 cm, and EP causes the soil to have a high profile development index. Second, compared with TP, EP can improve bulk density (BD), soil organic carbon (SOC), total nitrogen (TN) and cation exchange capacity (CEC), Finally, the chemical weathering intensity differed among NE, TP and EP and followed the order of TP > NE > EP. Therefore, in the future, the genetic characteristics of soils dominated by anthropic activities should be considered. This will help us systematically understand the genesis and evolutionary characteristics of soil and lay a foundation for further perfecting the diagnostic horizon and diagnostic characteristics of the Soil Taxonomy and World Reference Base.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8531366 | PMC |
http://dx.doi.org/10.1038/s41598-021-00302-w | DOI Listing |
Braz J Biol
January 2025
Universidade Federal Rural da Amazônia - UFRA, Belém, PA, Brasil.
Anthropic activities such as industries, agriculture and mining has generated public concern for its numerous irregular disposals of its waste, the incorrect deposition of heavy metals such as nickel (Ni) has caused the degradation and contamination of groundwater and water. Studies that point out cheap and efficient solutions have been an obstacle to the advancement of solutions for degraded area recovery programs. For this, a vegetable home experiment was developed, with an entirely randomized design with 5 treatments being a control (no metal) and 4 nickel concentrations (200 μM/L; 400 μM/L; 600 μM/L and 800 μM/L) with 6 repetitions.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Earth Science, University of Bizerte-FSB, University of Carthage, 7120, Bizerte, Tunisia.
The Ichkeul-Bizerte Lagoon Complex (IBLC), a critical ecosystem for local biodiversity, faces a pressing threat due to climate change and severe pollution. Despite past conservation efforts, pollution persists, particularly in the Bizerte Lagoon. This study investigated the impact of water dynamics and climatic conditions on heavy metal contamination in the IBLC's sediments.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia.
Three-quarters of the planet's land surface has been altered by humans, with consequences for animal ecology, movements and related ecosystem functioning. Species often occupy wide geographical ranges with contrasting human disturbance and environmental conditions, yet, limited data availability across species' ranges has constrained our understanding of how human pressure and resource availability jointly shape intraspecific variation of animal space use. Leveraging a unique dataset of 758 annual GPS movement trajectories from 375 brown bears (Ursus arctos) across the species' range in Europe, we investigated the effects of human pressure (i.
View Article and Find Full Text PDFConserv Biol
December 2024
Université de Strasbourg, CNRS, IPHC (UMR 7178), Strasbourg, France.
Action-oriented conservation sciences are crippled by 3 false assumptions. First, although it is recognized in theory that natural and anthropic components of ecosystems are tightly intertwined, in practice, many conservation policies and actions are still based on the assumption that human and nonhuman stakes should be dealt with in deeply different ways. Second, although the anchorage of environmental sciences in values is amply demonstrated, many conservation scientists still assume they will lose their scientific credentials if they actively participate in decision-making.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!