MIF versus SIF Motoneurons, What Are Their Respective Contribution in the Oculomotor Medial Rectus Pool?

J Neurosci

Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville 41012, Spain

Published: November 2021

Multiply-innervated muscle fibers (MIFs) are peculiar to the extraocular muscles as they are non-twitch but produce a slow build up in tension on repetitive stimulation. The motoneurons innervating MIFs establish en grappe terminals along the entire length of the fiber, instead of the typical en plaque terminals that singly-innervated muscle fibers (SIFs) motoneurons establish around the muscle belly. MIF motoneurons have been proposed to participate only in gaze holding and slow eye movements. We aimed to discern the function of MIF motoneurons by recording medial rectus motoneurons of the oculomotor nucleus. Single-unit recordings in awake cats demonstrated that electrophysiologically-identified medial rectus MIF motoneurons participated in different types of eye movements, including fixations, rapid eye movements or saccades, convergences, and the slow and fast phases of the vestibulo-ocular nystagmus, the same as SIF motoneurons did. However, MIF medial rectus motoneurons presented lower firing frequencies, were recruited earlier and showed lower eye position (EP) and eye velocity (EV) sensitivities than SIF motoneurons. MIF medial rectus motoneurons were also smaller, had longer antidromic latencies and a lower synaptic coverage than SIF motoneurons. Peristimulus time histograms (PSTHs) revealed that electrical stimulation to the myotendinous junction, where palisade endings are located, did not recurrently affect the firing probability of medial rectus motoneurons. Therefore, we conclude there is no division of labor between MIF and SIF motoneurons based on the type of eye movement they subserve. In addition to the common singly-innervated muscle fiber (SIF), extraocular muscles also contain multiply-innervated muscle fibers (MIFs), which are non-twitch and slow in contraction. MIF motoneurons have been proposed to participate only in gaze holding and slow eye movements. In the present work, by single-unit extracellular recordings in awake cats, we demonstrate, however, that both SIF and MIF motoneurons, electrophysiologically-identified, participate in the different types of eye movements. However, MIF motoneurons showed lower firing rates (FRs), recruitment thresholds, and eye-related sensitivities, and could thus contribute to the fine adjustment of eye movements. Electrical stimulation of the myotendinous junction activates antidromically MIF motoneurons but neither MIF nor SIF motoneurons receive a synaptic reafferentation that modifies their discharge probability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8612643PMC
http://dx.doi.org/10.1523/JNEUROSCI.1480-21.2021DOI Listing

Publication Analysis

Top Keywords

mif motoneurons
28
sif motoneurons
24
medial rectus
24
eye movements
24
motoneurons
19
rectus motoneurons
16
mif
12
muscle fibers
12
motoneurons mif
12
eye
9

Similar Publications

Introduction: Extraocular muscles are innervated by two anatomically and histochemically distinct motoneuron populations: motoneurons of multiply-innervated fibers (MIF), and of singly-innervated fibers (SIF). Recently, it has been established by our research group that these motoneuron types of monkey abducens and trochlear nuclei express distinct ion channel profiles: SIF motoneurons, as well as abducens internuclear neurons (INT), express strong Kv1.1 and Kv3.

View Article and Find Full Text PDF

Targeting low levels of MIF expression as a potential therapeutic strategy for ALS.

Cell Rep Med

May 2024

Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel; The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel. Electronic address:

Article Synopsis
  • Mutations in the SOD1 gene are linked to amyotrophic lateral sclerosis (ALS), leading to the loss of motor neurons and associated symptoms.
  • Researchers found that injecting macrophage migration inhibitory factor (MIF) into SOD1 mice improves motor function, slows down ALS progression, and increases survival by reducing SOD1 misfolding and neuroinflammation.
  • Low levels of MIF were observed in both stem cell-derived motor neurons from ALS patients and in the tissues of deceased sporadic ALS patients, suggesting that MIF could be a potential therapy for ALS.
View Article and Find Full Text PDF

Parkinson's disease (PD) is a progressive neurodegenerative condition that pathognomonically involves the death of dopaminergic neurons in the substantia nigra pars compacta, resulting in a myriad of motor and non-motor symptoms. Given the insurmountable burden of this disease on the population and healthcare system, significant efforts have been put forth toward generating disease modifying therapies. This class of treatments characteristically alters disease course, as opposed to current strategies that focus on managing symptoms.

View Article and Find Full Text PDF

Fine control of extraocular muscle fibers derives from two subpopulations of cholinergic motoneurons in the oculomotor-, trochlear- and abducens nuclei. Singly- (SIF) and multiply innervated muscle fibers (MIF) are supplied by the SIF- and MIF motoneurons, respectively, representing different physiological properties and afferentation. SIF motoneurons, as seen in earlier studies, are coated with chondroitin sulfate proteoglycan rich perineuronal nets (PNN), whereas MIF motoneurons lack those.

View Article and Find Full Text PDF

Extraocular Motoneurons and Neurotrophism.

Adv Neurobiol

September 2022

Departamento de Fisiología, Universidad de Sevilla, Seville, Spain.

Extraocular motoneurons are located in three brainstem nuclei: the abducens, trochlear and oculomotor. They control all types of eye movements by innervating three pairs of agonistic/antagonistic extraocular muscles. They exhibit a tonic-phasic discharge pattern, demonstrating sensitivity to eye position and sensitivity to eye velocity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!