Most genetic changes have negligible reversion rates. As most mutations that confer resistance to an adverse condition (e.g., drug treatment) also confer a growth defect in its absence, it is challenging for cells to genetically adapt to transient environmental changes. Here, we identify a set of rapidly reversible drug-resistance mutations in that are caused by microhomology-mediated tandem duplication (MTD) and reversion back to the wild-type sequence. Using 10,000× coverage whole-genome sequencing, we identify nearly 6,000 subclonal MTDs in a single clonal population and determine, using machine learning, how MTD frequency is encoded in the genome. We find that sequences with the highest-predicted MTD rates tend to generate insertions that maintain the correct reading frame, suggesting that MTD formation has shaped the evolution of coding sequences. Our study reveals a common mechanism of reversible genetic variation that is beneficial for adaptation to environmental fluctuations and facilitates evolutionary divergence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8639346 | PMC |
http://dx.doi.org/10.1073/pnas.2019060118 | DOI Listing |
Vet Sci
November 2024
Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao 066600, China.
Background: Bovine respiratory syncytial virus (BRSV) is a significant cause of bovine respiratory disease, resulting in significant losses to the cattle industry. For rapid detection of BRSV, a real-time recombinase-aided isothermal amplification assay (qRT-RAA) based on the gene of BRSV was developed in this study.
Results: The developed qRT-RAA assay showed good exponential amplification of the target fragment in 20 min at a constant temperature of 39 °C.
Front Vet Sci
December 2024
College of Animal Science and Technology, Guangxi University, Nanning, China.
Porcine hemagglutinating encephalomyelitis virus (PHEV), porcine pseudorabies virus (PRV), and classical swine fever virus (CSFV) are currently prevalent worldwide and cause similar neurological symptoms in infected pigs. It is very important to establish a detection method that can rapidly and accurately detect and differentiate these three viruses. Targeting the PHEV N gene, PRV gB gene, and CSFV 5' untranslated region (5'UTR), three pairs of specific primers and probes were designed, and a triplex crystal digital reverse transcription-PCR (cdRT-PCR) was developed to detect PHEV, PRV, and CSFV.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
ETH Zurich, Materials, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich, SWITZERLAND.
Photoiniferter (PI) is a promising polymerization methodology, often used to overcome restrictions posed by thermal reversible addition-fragmentation chain-transfer (RAFT) polymerization. However, in the overwhelming majority of reports, high energy UV irradiation is required to effectively trigger photolysis of RAFT agents and facilitate the polymerization, significantly limiting its potential, scope, and applicability. Although visible light PI has emerged as a highly attractive alternative, most current approaches are limited to the synthesis of lower molecular weight polymers, and typically suffer from prolonged reaction times, extended induction periods, and higher dispersities.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
Objective: Autoimmune glial fibrillary acidic protein astrocytopathy (GFAP-A) is a novel steroid sensitive autoimmune disease, without a diagnostic consensus. The purpose of this study was to improve early GFAP-A diagnosis by increasing awareness of key clinical characteristics and imaging manifestations.
Methods: Medical records of 13 patients with anti-GFAP antibodies in serum or cerebrospinal fluid (CSF) were reviewed for cross-sectional and longitudinal analysis of clinical and magnetic resonance imaging (MRI) findings.
Org Lett
December 2024
State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
A visible light-driven, intermolecular interrupted Barton reaction has been developed for radical-relay sulfonyloximation of alkenes with alkyl nitrites, using DABSO as a trapping reagent. This method overcomes the challenges of competing normal Barton reactions and polarity mismatches by rapidly and irreversibly capturing alkyl radicals, preventing unwanted side reactions. The resulting polarity-reversed sulfonyl radicals undergo highly selective addition to alkenes, yielding α-alkylsulfonyl ketoximes tethered to hydroxyl or ketone groups.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!