Background: Lately, high-throughput RNA sequencing has been extensively used to elucidate the transcriptome landscape and dynamics of cell types of different species. In particular, for most non-model organisms lacking complete reference genomes with high-quality annotation of genetic information, reference-free (RF) de novo transcriptome analyses, rather than reference-based (RB) approaches, are widely used, and RF analyses have substantially contributed toward understanding the mechanisms regulating key biological processes and functions. To date, numerous bioinformatics studies have been conducted for assessing the workflow, production rate, and completeness of transcriptome assemblies within and between RF and RB datasets. However, the degree of consistency and variability of results obtained by analyzing gene expression levels through these two different approaches have not been adequately documented.
Results: In the present study, we evaluated the differences in expression profiles obtained with RF and RB approaches and revealed that the former tends to be satisfactorily replaced by the latter with respect to transcriptome repertoires, as well as from a gene expression quantification perspective. In addition, we urge cautious interpretation of these findings. Several genes that are lowly expressed, have long coding sequences, or belong to large gene families must be validated carefully, whenever gene expression levels are calculated using the RF method.
Conclusions: Our empirical results indicate important contributions toward addressing transcriptome-related biological questions in non-model organisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8529712 | PMC |
http://dx.doi.org/10.1186/s12859-021-04226-0 | DOI Listing |
Exp Hematol Oncol
January 2025
Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
Myelodysplastic Syndromes (MDS) represent a group of heterogeneous myeloid clonal diseases derived from aberrant hematopoietic stem/progenitor cells. Enhancer of zeste homolog 2 (EZH2) is an important regulator in gene expression through methyltransferase-dependent or methyltransferase-independent mechanisms. Herein, we found EZH2 inhibition led to MDS cell pyroptosis through RNA Helicase A (RHA) down-regulation induced overexpression of S100A9, a key regulator of inflammasome activation and pyroptosis.
View Article and Find Full Text PDFClin Epigenetics
January 2025
Center of Oncocytogenomics, Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine of Charles University in Prague, U Nemocnice 499/2, 128 00, Prague, Czech Republic.
Background: Glioblastoma is the commonest malignant brain tumor and has a very poor prognosis. Reduced expression of the MGMT gene (10q26.3), influenced primarily by the methylation of two differentially methylated regions (DMR1 and DMR2), is associated with a good response to temozolomide treatment.
View Article and Find Full Text PDFBMC Pharmacol Toxicol
January 2025
Yanzhou District People's Hospital, Jining, Shandong, China.
Background: Osteoporosis (OP), often termed the "silent epidemic," poses a substantial public health burden. Emerging insights into the molecular functions of FBXW4 have spurred interest in its potential roles across various diseases.
Methods: This study explored FBXW4 by integrating DEGs from GEO datasets GSE2208, GSE7158, GSE56815, and GSE35956 with immune-related gene compilations from the ImmPort repository.
World J Surg Oncol
January 2025
Department of Pathology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai, 200092, China.
Objective: This study aimed to compare the expression of lymphoid enhancer factor 1 (LEF1) and β-catenin in basal cell adenoma (BA), desmoid-type fibromatosis (DF), and pancreatic solid pseudopapillary neoplasm (SPN) to evaluate their diagnostic utility in tumors associated with the WNT/β-catenin signaling pathway harboring the mutation of CTNNB1 gene 3 exon.
Methods: Eighty tumor patients, including 26 BAs, 30 DFs, and 24 SPNs, were analyzed. Immunohistochemical staining was identified positive (nuclear staining of LEF1 and β-catenin in > 50% of tumor cells).
Mol Med
January 2025
Department of Urology, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, 510920, Guangdong, People's Republic of China.
Prostate cancer (PCa) is a highly common type of malignancy and affects millions of men in the world since it is easy to recur or emerge therapy resistance. Therefore, it is urgent to find novel treatments for PCa patients. In the current study, we found that tegaserod maleate (TM), an FDA-approved agent, inhibited proliferation, colony formation, migration as well as invasion, caused the arrest of the cell cycle, and promoted apoptosis of PCa cells in vitro.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!