AAV9-Mediated Cardiac CNTF Overexpression Exacerbated Adverse Cardiac Remodeling in Streptozotocin-Induced Type 1 Diabetic Models.

Cardiovasc Toxicol

Department of Emergency, Shenzhen Hospital, Southern Medical University, Shenzhen, 518101, People's Republic of China.

Published: January 2022

Ciliary neurotrophic factor (CNTF), which is a neural peptide, has been reported to confer cardioprotective effects. However, whether CNTF-based gene delivery could prevent cardiac remodeling in diabetes mellitus remains unknown. In this study, we used adeno-associated viral vector serotype 9 (AAV9)-based cardiac gene delivery to test the effects of CNTF overexpression on adverse ventricular remodeling in streptozotocin-induced type 1 diabetic mice models. Postnatal (P3-P10) mice were peritoneally injected with AAV9 recombinant virus carrying the CNTF gene or EGFP gene. Then, type 1 diabetic models were established by peritoneal injection of streptozotocin (200 mg/kg) in 7-week-old female mice injected with AAV9. 4 weeks later after the establishment of type 1 diabetes mellitus, mouse hearts were removed to assess the degree of cardiac remodeling. We found that CNTF overexpression in mouse cardiomyocytes exacerbated cell apoptosis and cardiac fibrosis coupled with an increased inflammatory response in the heart tissue of diabetic female mice. Taken together, our results suggested that cardiac CNTF gene delivery may not be beneficial in alleviating adverse cardiac remodeling in type 1 diabetes female mice.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12012-021-09706-6DOI Listing

Publication Analysis

Top Keywords

cardiac remodeling
16
cntf overexpression
12
type diabetic
12
gene delivery
12
female mice
12
cardiac cntf
8
adverse cardiac
8
remodeling streptozotocin-induced
8
streptozotocin-induced type
8
diabetic models
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!