Electrochemically activated peroxymonosulfate for the abatement of chloramphenicol in water: performance and mechanism.

Environ Sci Pollut Res Int

State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.

Published: March 2022

In this study, electrochemically activated peroxymonosulfate (EC/PMS) with a sacrificial iron electrode was used for the removal of chloramphenicol (CAP) from water. Compared to electrolysis alone, peroxymonosulfate (PMS) alone, and Fe/PMS, EC/PMS significantly enhanced the CAP degradation. Various parameters, such as the applied current, electrolyte concentration, and PMS dose, were investigated to optimize the process. In addition, acidic conditions facilitated the CAP degradation. The presence of Cl slightly enhanced the CAP degradation, while both HCO and NO exhibited an inhibitory effect on the CAP degradation. The floccules were also analyzed after the reaction by XPS and XRD. Quenching experiments indicated that both sulfate radicals (SO) and hydroxyl radicals (•OH) were responsible for the CAP degradation. In addition, the degradation products were identified by LC/TOF/MS, and the degradation pathways were proposed accordingly. These results indicated that EC/PMS is a promising treatment process for the remediation of water polluted by CAP.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-021-17089-yDOI Listing

Publication Analysis

Top Keywords

cap degradation
20
electrochemically activated
8
activated peroxymonosulfate
8
enhanced cap
8
cap
7
degradation
7
peroxymonosulfate abatement
4
abatement chloramphenicol
4
chloramphenicol water
4
water performance
4

Similar Publications

Background: Community-acquired pneumonia (CAP) poses a significant health threat to the elderly population, leading to high morbidity and mortality rates. Serum ferritin, a critical indicator of iron metabolism, plays a pivotal role in inflammation and immune regulation. Nevertheless, its specific prognostic relevance in elderly patients with CAP remains unclear.

View Article and Find Full Text PDF

Background & Aims: The triglyceride-glucose index (TyG) and triglyceride-glucose body mass index (TyG-BMI) have been identified as potential predictive factors for metabolic dysfunction-associated steatotic liver disease (MASLD). However, they do not include high density lipoprotein (HDL-C), which is closely related to lipid metabolism. Furthermore, there is a lack of comprehensive and longitudinal data to determine the cut-off points for different degrees of hepatic steatosis and liver fibrosis in MASLD.

View Article and Find Full Text PDF

Ubiquitination-dependent degradation of DHX36 mediated by porcine circovirus type 3 capsid protein.

Virology

January 2025

College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China. Electronic address:

Porcine circovirus type 3 (PCV3) is an emerging pathogen that causes porcine dermatitis, and reproductive failure. PCV3 Cap interacts with DExD/H-box helicase 36 (DHX36), a protein that functions primarily through regulating interferon (IFN)-β production. However, how the interaction between DHX36 and PCV3 Cap regulates viral replication remains unknown.

View Article and Find Full Text PDF

Potential of Trilayered Gelatin/Polycaprolactone Nanofibers for Periodontal Regeneration: An In Vitro Study.

Int J Mol Sci

January 2025

Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria.

Over the past few years, biomaterial-based periodontal tissue engineering has gained popularity. An ideal biomaterial for treating periodontal defects is expected to stimulate periodontal-derived cells, allowing them to contribute most efficiently to tissue reconstruction. The present study focuses on evaluating the in vitro behavior of human periodontal ligament-derived stromal cells (hPDL-MSCs) when cultured on gelatin/Polycaprolactone prototype (GPP) and volume-stable collagen matrix (VSCM).

View Article and Find Full Text PDF

A notion of the continuous production of amyloid-β (Aβ) via the proteolysis of Aβ-protein-precursor (AβPP) in Alzheimer's disease (AD)-affected neurons constitutes both a cornerstone and an article of faith in the Alzheimer's research field. The present Perspective challenges this assumption. It analyses the relevant empirical data and reaches an unexpected conclusion, namely that in AD-afflicted neurons, the production of AβPP-derived Aβ is either discontinued or severely suppressed, a concept that, if proven, would fundamentally change our understanding of the disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!