. Coils designed for transcranial magnetic stimulation (TMS) must incorporate trade-offs between the required electrical power or energy, focality and depth penetration of the induced electric field (E-field), coil size, and mechanical properties of the coil, as all of them cannot be optimally met at the same time. In multi-locus TMS (mTMS), a transducer consisting of several coils allows electronically targeted stimulation of the cortex without physically moving a coil. In this study, we aimed to investigate the relationship between the number of coils in an mTMS transducer, the focality of the induced E-field, and the extent of the cortical region within which the location and orientation of the maximum of the induced E-field can be controlled.We applied convex optimization to design planar and spherically curved mTMS transducers of different E-field focalities and analyzed their properties. We characterized the trade-off between the focality of the induced E-field and the extent of the cortical region that can be stimulated with an mTMS transducer with a given number of coils.At the expense of the E-field focality, one can, with the same number of coils, design an mTMS transducer that can control the location and orientation of the peak of the induced E-field within a wider cortical region.. With E-fields of moderate focality, the problem of electronically targeted TMS becomes considerably easier compared with highly focal E-fields; this may speed up the development of mTMS and the emergence of new clinical and research applications.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1741-2552/ac3207DOI Listing

Publication Analysis

Top Keywords

mtms transducer
16
induced e-field
16
number coils
12
cortical region
12
focality number
8
transcranial magnetic
8
magnetic stimulation
8
electronically targeted
8
focality induced
8
e-field extent
8

Similar Publications

Transcranial magnetic stimulation (TMS) is a non-invasive method for stimulating the cortex. Concurrent functional magnetic resonance imaging can show changes in TMS-induced activity in the whole brain, with the potential to inform brain function research and to guide the development of TMS therapy. However, the interaction of the strong current pulses in the TMS coil in the static main magnetic field of the MRI produces high Lorentz forces, which may damage the coil enclosure and compromise the patient's safety.

View Article and Find Full Text PDF

Objective: This work aims for a method to design manufacturable windings for transcranial magnetic stimulation (TMS) coils with fine control over the induced electric field (E-field) distributions. Such TMS coils are required for multi-locus TMS (mTMS).

Methods: We introduce a new mTMS coil design workflow with increased flexibility in target E-field definition and faster computations compared to our previous method.

View Article and Find Full Text PDF

TMS with fast and accurate electronic control: Measuring the orientation sensitivity of corticomotor pathways.

Brain Stimul

April 2022

Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.

Background: Transcranial magnetic stimulation (TMS) coils allow only a slow, mechanical adjustment of the stimulating electric field (E-field) orientation in the cerebral tissue. Fast E-field control is needed to synchronize the stimulation with the ongoing brain activity. Also, empirical models that fully describe the relationship between evoked responses and the stimulus orientation and intensity are still missing.

View Article and Find Full Text PDF

Multi-locus transcranial magnetic stimulation system for electronically targeted brain stimulation.

Brain Stimul

March 2022

Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.

Background: Transcranial magnetic stimulation (TMS) allows non-invasive stimulation of the cortex. In multi-locus TMS (mTMS), the stimulating electric field (E-field) is controlled electronically without coil movement by adjusting currents in the coils of a transducer.

Objective: To develop an mTMS system that allows adjusting the location and orientation of the E-field maximum within a cortical region.

View Article and Find Full Text PDF

. Coils designed for transcranial magnetic stimulation (TMS) must incorporate trade-offs between the required electrical power or energy, focality and depth penetration of the induced electric field (E-field), coil size, and mechanical properties of the coil, as all of them cannot be optimally met at the same time. In multi-locus TMS (mTMS), a transducer consisting of several coils allows electronically targeted stimulation of the cortex without physically moving a coil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!