Covid-19 pandemic imposes crucial social distancing rules and restriction measures; therefore, the access to facilities and sites, in order to perform on-site inspections, became difficult or not feasible. Greek Atomic Energy Commission (EEAE) adopted remote virtual inspections (RVIs) of facilities and practices applying ionising radiation and magnetic resonance imaging installations, in order to continue discharging its regulatory duty of inspection, effectively. This study presents the experience gained and lessons learnt from the implementation of the RVIs and explores the RVIs perception by the stakeholders. Moreover, the effectiveness and the capability of RVIs to identify 'findings', is assessed by comparing the on-site and the remote inspections outcomes. The presented study showed that RVIs could not replace the on-site inspections, entirely; however, they could support and contribute to the inspection activities and program, in certain circumstances. RVIs were proven to be a valuable tool for the inspection of procedures, documents and records as well as the design and operational conditions of the facilities. The performance of remote verification tests and measurements, although feasible, was challenging, due to the technical issues needed to be resolved in advance. The comparison between remote and on-site inspections outcomes showed that both inspection options had similar capability to identify 'findings', indicating the validity of the RVIs as an inspection methodology in certain inspection thematic areas. The perception of the RVIs was positive and the added value and usefulness was acknowledged by the inspected facilities' personnel and the EEAE's inspectors, although the latter mainly considered RVIs as complementary and supportive to the on-site inspections.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6498/ac31c2DOI Listing

Publication Analysis

Top Keywords

on-site inspections
16
rvis
9
remote virtual
8
facilities practices
8
ionising radiation
8
covid-19 pandemic
8
identify 'findings'
8
inspections outcomes
8
inspections
7
inspection
6

Similar Publications

Point-of-care testing (POCT) involves administering rapid on-site analysis to provide fast biochemical testing results. POCT reduces delays in clinical decision-making and eliminates the need to transport and prepare clinical samples for immediate diagnosis or clinical intervention by healthcare professionals. Herein, a novel methodology integrating thin-layer chromatography-based two-dimensional separation with miniature mass spectrometry was developed for rapid on-site clinical analysis.

View Article and Find Full Text PDF

High-Brightness Color-Tunable AC-Driven Quantum Dot Light-Emitting Diodes for Integrated Passive High-Electric-Field Contactless Detection.

ACS Appl Mater Interfaces

December 2024

Institute of Optoelectronics Technology, Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Beijing 100044, China.

This work explores the carrier recombination dynamics of AC-driven quantum dot (QD) light-emitting diodes (AC-QLEDs) and proposes their application in the field of electric field contactless detection. Different sequences of green QD (GQD)/red QD (RQD) bilayer thin films as the emission layer of AC-QLEDs were fabricated via film transfer printing to ensure the complete morphology of each layer. AC-QLEDs with the emission layer as the sequence of GQD + RQD (GR-QLEDs) show a significantly enhanced carrier recombination efficiency due to its stable energy level structure, achieving the highest peak brightness ever recorded for vertically emitting brightness of 1648.

View Article and Find Full Text PDF

This study aimed to identify critical issues in artisanal bakery and pastry production in Italy that could improve food safety and quality. Fifteen voluntary Italian companies underwent on-site inspections and interviews from 2018 to 2021. The inspection concerned the production site characteristics, processing flows, materials, and personnel to pinpoint potential product contamination and record objective data collection through a 126-question demerit scoring system.

View Article and Find Full Text PDF

The use of Artificial Intelligence (AI) to detect defects such as concrete cracks in civil and transport infrastructure has the potential to make inspections less expensive, quicker, safer and more objective by reducing the need for on-site human labour. One deployment scenario involves using a drone to carry an embedded device and camera, with the device making localised predictions at the edge about the existence of defects using a trained convolutional neural network (CNN) for image classification. In this paper, we trained six CNNs, namely Resnet18, Resnet50, GoogLeNet, MobileNetV2, MobileNetV3-Small and MobileNetV3-Large, using transfer learning technology to classify images of concrete structures as containing a crack or not.

View Article and Find Full Text PDF

Development of Automated 3D LiDAR System for Dimensional Quality Inspection of Prefabricated Concrete Elements.

Sensors (Basel)

November 2024

Changjiang Spatial Information Technology Engineering Co., Ltd., Wuhan 430010, China.

The dimensional quality inspection of prefabricated concrete (PC) elements is crucial for ensuring overall assembly quality and enhancing on-site construction efficiency. However, current practices remain heavily reliant on manual inspection, which results in high operator dependency and low efficiency. Existing Light Detection and Ranging (LiDAR)-based methods also require skilled professionals for scanning and subsequent point cloud processing, thereby presenting technical challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!