The widespread commercial application of titanium dioxide nanoparticles (TiO NPs) leads to ubiquitous presence of TiO NPs in the aquatic environment, which highlights the necessity to determine their potential adverse effects on aquatic organisms. The developing nerve system is particularly susceptible to environment perturbation. However, few studies have explored the developmental neurobehavioral toxicity of TiO NPs, especially at smaller particle size ranges (≤20 nm) that have relatively longer retention time in the water column. In this study, zebrafish embryos were exposed to non-teratogenic concentrations of 0.1 and 1 mg/L TiO NPs (average size of 14-20 nm) from 8 to 108 h post-fertilization (hpf) followed by various assessments at different time points up to 12 days post-fertilization (dpf). Our findings revealed that 1 mg/L TiO NPs perturbed the motor and social behaviors in larval zebrafish. These behavioral changes were characterized by decreased swimming speed in a locomotor response test at 5 dpf, increased travel distance in a flash stimulus test at 5 dpf, increased preference to the light zone in a light/dark preference test at 10 dpf, and increased mirror attack and percent time spent in the mirror zone in a mirror stimulus response assay at 12 dpf. Mechanistic examinations at 5 dpf revealed elevated cell apoptosis and oxidative stress. Cell apoptosis was characterized by increased acridine orange (AO) positive cells in the olfactory region and neuromasts of the lateral line system. Oxidative stress was characterized by increased lipid peroxidation, increased ROS production, and upregulated catalase (cat) gene expression. In addition, TiO NP exposure also upregulated genes associated with the developmental nervous system such as the growth associated protein 43 (gap43) and proliferating cell nuclear antigen (pcna). Our results suggest that the neurobehavioral changes in larvae exposed to 1 mg/L TiO NPs during early development may result from cell apoptosis and oxidative stress induced neuronal damages.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aquatox.2021.105990DOI Listing

Publication Analysis

Top Keywords

tio nps
24
oxidative stress
16
1 mg/l tio
12
cell apoptosis
12
titanium dioxide
8
neurobehavioral changes
8
test 5 dpf
8
5 dpf increased
8
apoptosis oxidative
8
characterized increased
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!