The heterogeneous Fenton-like reaction is an advanced oxidation process, which is widely recognized for its efficient removal of recalcitrant organic contaminants. In recent years, the construction of efficient and reusable heterogeneous Fenton-like catalysts has been extensively investigated. Recently, the use of bimetallic oxides and their complexes as catalysts for Fenton-like reaction has attracted intense attention due to their high catalytic performance and excellent stability over a wide pH range. In this article, the fundamental mechanisms of Fenton-like reactions were briefly introduced. The important reports on bimetallic oxides and their complexes are classified in detail, which are mainly divided into Fe-based and Fe-free bimetallic catalysts. We then focused in depth on the performance of their respective applications in Fenton-like reactions. Special consideration has been given to the respective contributions and synergistic mechanisms of the two metals in catalysts. Overall, it is concluded that synergistic effect of the two metals in the bimetallic catalyst can boost the utilization of hydrogen peroxide, provide adequate accessible active sites, which are all beneficial to improve catalytic performance. Finally, the current challenges in this field were proposed. Our review is expected to provide help for the application of bimetallic oxides and their complexes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2021.127419 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!