An Introduction to Advanced Targeted Acquisition Methods.

Mol Cell Proteomics

Proteome Dynamics, Max Delbrück Center for Molecular Medicine, Berlin, Germany; Charité-Universitätsmedizin Berlin, Berlin, Germany. Electronic address:

Published: March 2022

Targeted proteomics via selected reaction monitoring (SRM) or parallel reaction monitoring (PRM) enables fast and sensitive detection of a preselected set of target peptides. However, the number of peptides that can be monitored in conventional targeting methods is usually rather small. Recently, a series of methods has been described that employ intelligent acquisition strategies to increase the efficiency of mass spectrometers to detect target peptides. These methods are based on one of two strategies. First, retention time adjustment-based methods enable intelligent scheduling of target peptide retention times. These include Picky, iRT, as well as spike-in free real-time adjustment methods such as MaxQuant.Live. Second, in spike-in triggered acquisition methods such as SureQuant, Pseudo-PRM, TOMAHAQ, and Scout-MRM, targeted scans are initiated by abundant labeled synthetic peptides added to samples before the run. Both strategies enable the mass spectrometer to better focus data acquisition time on target peptides. This either enables more sensitive detection or a higher number of targets per run. Here, we provide an overview of available advanced targeting methods and highlight their intrinsic strengths and weaknesses and compatibility with specific experimental setups. Our goal is to provide a basic introduction to advanced targeting methods for people starting to work in this field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8600983PMC
http://dx.doi.org/10.1016/j.mcpro.2021.100165DOI Listing

Publication Analysis

Top Keywords

target peptides
12
targeting methods
12
methods
9
introduction advanced
8
acquisition methods
8
reaction monitoring
8
sensitive detection
8
advanced targeting
8
peptides
5
advanced targeted
4

Similar Publications

Retrosynthesis is a strategy to analyze the synthetic routes for target molecules in medicinal chemistry. However, traditional retrosynthesis predictions performed by chemists and rule-based expert systems struggle to adapt to the vast chemical space of real-world scenarios. Artificial intelligence (AI) has revolutionized retrosynthesis prediction in recent decades, significantly increasing the accuracy and diversity of predictions for target compounds.

View Article and Find Full Text PDF

Applications of mass spectrometry imaging in botanical research.

Adv Biotechnol (Singap)

February 2024

State Key Laboratory of Traditional Chinese Medicine/School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.

Mass spectrometry imaging (MSI) serves as a valuable tool enabling researchers to scrutinize various compounds, peptides, and proteins within a sample, providing detailed insights at both elemental and molecular levels. This innovative technology transforms information obtained from a mass spectrometer- encompassing ionic strength, mass-to-charge ratio, and ionized molecule coordinates-within a defined region into a pixel-based model. Consequently, it reconstructs the spatial distribution of ions, allowing for a comprehensive understanding of molecular landscapes.

View Article and Find Full Text PDF

Arsenic trioxide (ATO), the active ingredient in Chinese arsenic, effectively inhibits hepatocellular carcinoma (HCC) cell growth, but its clinical application is limited by the lack of a targeted delivery system. Phosphatidylinositol proteoglycan 3 (GPC3) is specifically expressed in HCC, and CPP44 is a cell-penetrating peptide that targets HCC cells. Here, we developed a liposome incorporating ATO with dual surface modifications of anti-GPC3 antibody and CPP44.

View Article and Find Full Text PDF

ISB 1442 is a bispecific biparatopic antibody in clinical development to treat hematological malignancies. It consists of two adjacent anti-CD38 arms targeting non-overlapping epitopes that preferentially drive binding to tumor cells and a low-affinity anti-CD47 arm to enable avidity-induced blocking of proximal CD47 receptors. We previously reported the pharmacology of ISB 1442, designed to reestablish synthetic immunity in CD38+ hematological malignancies.

View Article and Find Full Text PDF

Rationale: COVID-19-associated acute-respiratory distress syndrome (C-ARDS) results from a direct viral injury associated with host excessive innate immune response mainly affecting the lungs. However, cytokine profile in the lung compartment of C-ARDS patients has not been widely studied, nor compared to non-COVID related ARDS (NC-ARDS).

Objectives: To evaluate caspase-1 activation, IL-1 signature, and other inflammatory cytokine pathways associated with tissue damage using post-mortem lung tissues, bronchoalveolar lavage fluids (BALF), and serum across the spectrum of COVID-19 severity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!