3D printing is a manufacturing technique that is transforming numerous industrial sectors, particularly where it is key tool in the development and fabrication of medicinees that are personalised to the individual needs of patients. Most 3D printers are relatively large, require trained operators and must be located in a pharmaceutical setting to manufacture dosage forms. In order to realise fully the potential of point-of-care manufacturing of medicines, portable printers that are easy to operate are required. Here, we report the development of a 3D printer that operates using a mobile smartphone. The printer, operating on stereolithographic principles, uses the light from the smartphone's screen to photopolymerise liquid resins and create solid structures. The shape of the printed dosage form is determined using a custom app on the smartphone. Warfarin-loaded Printlets (3D printed tablets) of various sizes and patient-centred shapes (caplet, triangle, diamond, square, pentagon, torus, and gyroid lattices) were successfully printed to a high resolution and with excellent dimensional precision using different photosensitive resins. The drug was present in an amorphous form, and the Printlets displayed sustained release characterises. The promising proof-of-concept results support the future potential of this compact, user-friendly and interconnected smartphone-based system for point-of-care manufacturing of personalised medications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2021.121199 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!