Forest harvest residue is a low-competitive biomass feedstock that is usually left to decay on site after forestry operations. Its removal and pyrolytic conversion to biochar is seen as an opportunity to reduce terrestrial CO emissions and mitigate climate change. The mitigation effect of biochar is, however, ultimately dependent on the availability of the biomass feedstock, thus CO removal of biochar needs to be assessed in relation to the capacity to supply biochar systems with biomass feedstocks over prolonged time scales, relevant for climate mitigation. In the present study we used an assembly of empirical models to forecast the effects of harvest residue removal on soil C storage and the technical capacity of biochar to mitigate national-scale emissions over the century, using Norway as a case study for boreal conditions. We estimate the mitigation potential to vary between 0.41 and 0.78 Tg CO equivalents yr, of which 79% could be attributed to increased soil C stock, and 21% to the coproduction of bioenergy. These values correspond to 9-17% of the emissions of the Norwegian agricultural sector and to 0.8-1.5% of the total national emission. This illustrates that deployment of biochar from forest harvest residues in countries with a large forestry sector, relative to economy and population size, is likely to have a relatively small contribution to national emission reduction targets but may have a large effect on agricultural emission and commitments. Strategies for biochar deployment need to consider that biochar's mitigation effect is limited by the feedstock supply which needs to be critically assessed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.151044DOI Listing

Publication Analysis

Top Keywords

climate change
8
change mitigation
8
mitigation potential
8
biochar
8
forest harvest
8
harvest residue
8
biomass feedstock
8
national emission
8
mitigation
5
potential biochar
4

Similar Publications

A Comprehensive Understanding of Tea Metabolome: From Tea Plants to Processed Teas.

Annu Rev Food Sci Technol

January 2025

4Division of Food and Nutrition, Chonnam National University, Gwangju, Republic of Korea; email:

Tea () is one of the most popular nonalcoholic beverages in the world, second only to water. Six main types of teas are produced globally: green, white, black, oolong, yellow, and Pu-erh. Each type has a distinctive taste, quality, and cultural significance.

View Article and Find Full Text PDF

The St. Lawrence Estuary (SLE) beluga () population in Canada is Endangered, and endocrine disrupting contaminants, such as polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and other halogenated flame retardants, have been identified as a threat to the recovery of this population. Here, potential impacts of these contaminants on SLE beluga were evaluated by comparing skin transcriptome profiles and biological pathways between this population and a population less exposed to contaminants (Eastern Beaufort Sea) used as a reference.

View Article and Find Full Text PDF

Growth decline in European beech associated with temperature-driven increase in reproductive allocation.

Proc Natl Acad Sci U S A

February 2025

Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland.

Climate change is impacting forests in complex ways, with indirect effects arising from interactions between tree growth and reproduction often overlooked. Our 43-y study of European beech () showed that rising summer temperatures since 2005 have led to more frequent seed production events. This shift increases reproductive effort but depletes the trees' stored resources due to insufficient recovery periods between seed crops.

View Article and Find Full Text PDF

Climate change is a spatial and temporarily non-uniform phenomenon that requires understanding its evolution to better evaluate its potential societal and economic impact. The value added of this paper lies in introducing a quantitative methodology grounded in the trend analysis of temperature distribution quantiles to analyze climate change heterogeneity (CCH). By converting these quantiles into time series objects, the methodology empowers the definition and measurement of various relevant concepts in climate change analysis (warming, warming typology, warming amplification and warming acceleration) in a straightforward and robust testable linear regression format.

View Article and Find Full Text PDF

The 2024 Zurich perfluorinated compounds (PFCs) summit reiterated the urgent need for non-selective analytical approaches for PFC detection. 19F NMR holds great potential, however, sensitivity limitations lead to long analysis times and/or the possibility of not detecting low concentration species. Steady State Free Precession (SSFP) NMR collects the signal in a steady state regime, allowing 100's of acquisitions in the timespan of a single traditional NMR scan.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!