The exploration of pluripotency space: Charting cell state transitions in peri-implantation development.

Cell Stem Cell

The Hospital for Sick Children and the Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; The Gairdner Foundation, Toronto, ON, Canada. Electronic address:

Published: November 2021

AI Article Synopsis

  • Pluripotent cells in mammalian embryos go through distinct stages, altering their gene expression and developmental capabilities during early development phases before and after implantation.
  • Studies on cultured mouse and human pluripotent stem cells have discovered an intermediate stage called the "formative state," bridging naive and primed pluripotency.
  • The research explores these findings in relation to mouse and human development and discusses how they might inform the creation of human embryo models using pluripotent cells.

Article Abstract

Pluripotent cells in the mammalian embryo undergo state transitions marked by changes in patterns of gene expression and developmental potential as they progress from pre-implantation through post-implantation stages of development. Recent studies of cultured mouse and human pluripotent stem cells (hPSCs) have identified cells representative of an intermediate stage (referred to as the formative state) between naive pluripotency (equivalent to pre-implantation epiblast) and primed pluripotency (equivalent to late post-implantation epiblast). We examine these recent findings in light of our knowledge of peri-implantation mouse and human development, and we consider the implications of this work for deriving human embryo models from pluripotent cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.stem.2021.10.001DOI Listing

Publication Analysis

Top Keywords

state transitions
8
pluripotent cells
8
mouse human
8
pluripotency equivalent
8
exploration pluripotency
4
pluripotency space
4
space charting
4
charting cell
4
cell state
4
transitions peri-implantation
4

Similar Publications

Vertical Quantum Confinement in Bulk MoS.

ACS Nano

January 2025

Dto. de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain.

We experimentally observe quantum confinement states in bulk MoS by using angle-resolved photoemission spectroscopy (ARPES). The band structure at the Γ̅ point reveals quantum well states (QWSs) linked to vertical quantum confinement of the electrons, confirmed by the absence of dispersion in and a strong intensity modulation with the photon energy. Notably, the binding energy dependence of the QWSs versus does not follow the quadratic dependence of a two-dimensional electron gas.

View Article and Find Full Text PDF

The amount of incorporation of linear alcohols and ethers in HSiWO·6HO (HSiW·6HO, 50 wt %) supported on silica (SiO) was estimated by a conventional volumetric method and infrared (IR) spectroscopy, and the state of involved molecules was elucidated. First, the attribution of the key IR band at 2200 cm, which was observed for the water of crystallization of HSiW·6HO, to HO species (protons) was verified by coincident observation of thermogravimetric-differential thermal analysis, X-ray diffraction (XRD), and IR spectroscopy during thermal treatment in addition to the isotope exchange with DO. The 2200 cm band was gradually decreased in intensity by increasing the amount of adsorption of pyridine and was totally consumed at saturation, while the volumetric method provided the accurate number of included pyridine molecules.

View Article and Find Full Text PDF

The intentional manipulation of carrier characteristics serves as a fundamental principle underlying various energy-related and optoelectronic semiconductor technologies. However, achieving switchable and reversible control of the polarity within a single material to design optimized devices remains a significant challenge. Herein, we successfully achieved dramatic reversible p-n switching during the semiconductor‒semiconductor phase transition in BiI via pressure, accompanied by a substantial improvement in their photoelectric properties.

View Article and Find Full Text PDF

Platelets as crucial players in the dynamic interplay of inflammation, immunity, and cancer: unveiling new strategies for cancer prevention.

Front Pharmacol

December 2024

Systems Pharmacology and Translational Therapeutics Laboratory, The Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy.

Inflammation plays a critical role in the pathogenesis of various diseases by promoting the acquisition of new functional traits by different cell types. Shared risk factors between cardiovascular disease and cancer, including smoking, obesity, diabetes, high-fat diet, low physical activity, and alcohol consumption, contribute to inflammation linked to platelet activation. Platelets contribute to an inflammatory state by activating various normal cells, such as fibroblasts, immune cells, and vascular cells.

View Article and Find Full Text PDF

ASAP1 is a multidomain Arf GTPase-activating protein (ArfGAP) that catalyzes GTP hydrolysis on the small GTPase Arf1 and is implicated in cancer progression. The PH domain of ASAP1 enhances its activity greater than 7 orders of magnitude but the underlying mechanisms remain poorly understood. Here, we combined Nuclear Magnetic Resonance (NMR), Molecular Dynamic (MD) simulations and mathematical modeling of functional data to build a comprehensive structural-mechanistic model of the complex of Arf1 and the ASAP1 PH domain on a membrane surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!