Step aside, aluminum honeycomb.

Science

School of Forest Resources, University of Maine, Orono, ME 04469, USA.

Published: October 2021

A two-step process can turn hardwood into a strong and flexible moldable material.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.abm3882DOI Listing

Publication Analysis

Top Keywords

step aluminum
4
aluminum honeycomb
4
honeycomb two-step
4
two-step process
4
process turn
4
turn hardwood
4
hardwood strong
4
strong flexible
4
flexible moldable
4
moldable material
4

Similar Publications

Superhydrophobic surfaces have been demonstrated to exhibit excellent anti-icing effects, but they are susceptible to the loss of ice repellency as a result of external impacts. This paper proposes a novel bionic armour structure that combines an armour structure with an arrowroot bionic structure. A composite method combining laser etching and chemical modification was employed to achieve superhydrophobicity on the surface of the aluminium alloy.

View Article and Find Full Text PDF

This paper explores the process of forming arrays of vertically oriented carbon nanotubes (CNTs) localized on metal electrodes using thin porous anodic alumina (PAA) on a solid substrate. On a silicon substrate, a titanium film served as the electrode layer, and an aluminium film served as the base layer in the initial film structure. A PAA template was formed from the Al film using two-step electrochemical anodizing.

View Article and Find Full Text PDF

Anticounterfeiting technologies have become increasingly crucial due to the growing issue of counterfeit goods, particularly in high-value industries. Traditional methods such as barcodes and holograms are prone to replication, prompting the need for advanced, cost-effective, and efficient solutions. In this work, a practical application of anodic aluminum oxide (AAO) membranes are presented for anticounterfeiting, which addresses the challenges of high production costs and complex fabrication processes.

View Article and Find Full Text PDF

This study aims to utilize secondary aluminum dross waste to synthesize Fe-Al layered double hydroxide (Fe-Al LDH) for efficient adsorption of arsenic from drinking water. The synthesis process was based on a multi-step hydrometallurgical approach, in which the aluminum content in the waste was first converted to sodium aluminate. This was followed by the transformation into Fe-Al LDH through a series of processes, including gelation, sol formation, simultaneous precipitation, and aging.

View Article and Find Full Text PDF

Dynamic random access memory (DRAM) has been a cornerstone of modern computing, but it faces challenges as technology scales down, particularly due to the mismatch between reduced storage capacitance and increasing OFF current. The capacitorless 2T0C DRAM architecture is recognized for its potential to offer superior area efficiency and reduced refresh rate requirements by eliminating the traditional capacitor. The exploration of two-dimensional (2D) materials further enhances scaling possibilities, though the absence of dangling bonds complicates the deposition of high-quality dielectrics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!