Long-Range Dipole-Dipole Interactions in a Plasmonic Lattice.

Nano Lett

Elmore Family School of Electrical and Computer Engineering, Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States.

Published: January 2022

Spontaneous emission of quantum emitters can be enhanced by increasing the local density of optical states, whereas engineering dipole-dipole interactions requires modifying the two-point spectral density function. Here, we experimentally demonstrate long-range dipole-dipole interactions (DDIs) mediated by surface lattice resonances in a plasmonic nanoparticle lattice. Using angle-resolved spectral measurements and fluorescence lifetime studies, we show that unique nanophotonic modes mediate long-range DDI between donor and acceptor molecules. We observe significant and persistent DDI strengths for a range of densities that map to ∼800 nm mean nearest-neighbor separation distance between donor and acceptor dipoles, a factor of ∼100 larger than free space. Our results pave the way to engineer and control long-range DDIs between an ensemble of emitters at room temperature.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.1c02835DOI Listing

Publication Analysis

Top Keywords

dipole-dipole interactions
12
long-range dipole-dipole
8
donor acceptor
8
long-range
4
interactions plasmonic
4
plasmonic lattice
4
lattice spontaneous
4
spontaneous emission
4
emission quantum
4
quantum emitters
4

Similar Publications

Hydrogels are promising materials for wearable electronics, artificial skins and biomedical engineering, but their limited stretchability, self-recovery and crack resistance restrict their performance in demanding applications. Despite efforts to enhance these properties using micelle cross-links, nanofillers and dynamic interactions, it remains a challenge to fabricate hydrogels that combine high stretchability, self-healing and strong adhesion. Herein, we report a novel hydrogel synthesized the copolymerization of acrylamide (AM), maleic acid (MA) and acrylonitrile (AN), designed to address these limitations.

View Article and Find Full Text PDF

In this work, we propose a path integral Monte Carlo approach based on discretized continuous degrees of freedom and rejection-free Gibbs sampling. The ground state properties of a chain of planar rotors with dipole-dipole interactions are used to illustrate the approach. Energetic and structural properties are computed and compared to exact diagonalization and numerical matrix multiplication for N ≤ 3 to assess the systematic Trotter factorization error convergence.

View Article and Find Full Text PDF

While searching for a new host suitable for near infrared (NIR) emission, we explored a new composition NaLaMgWO. The samples were prepared by solid state reaction method. X-ray Diffraction confirms crystallization of NaLaMgWO in monoclinic system.

View Article and Find Full Text PDF

Relaxor ferroelectric film capacitors exhibit high power density with ultra-fast charge and discharge rates, making them highly advantageous for consumer electronics and advanced pulse power supplies. The Aurivillius-phase bismuth layered ferroelectric films can effectively achieve a high breakdown electric field due to their unique insulating layer ((BiO) layer)). However, designing and fabricating Aurivillius-phase bismuth layer relaxor ferroelectric films with optimal energy storage characteristics is challenging due to their inherently stable ferroelectric properties.

View Article and Find Full Text PDF

Magnetically Induced Anisotropic Microstructures on Polyethylene Glycol Hydrogel Facilitate BMSC Alignment and Osteogenic Differentiation.

Gels

December 2024

Research Institute of Smart Medicine and Biological Engineering, Health Science Center, Ningbo University, Ningbo 315211, China.

Many tissues exhibit structural anisotropy, which imparts orientation-specific properties and functions. However, recapitulating the cellular patterns found in anisotropic tissues presents a remarkable challenge, particularly when using soft and wet hydrogels. Herein, we develop self-assembled anisotropic magnetic FeO micropatterns on polyethylene glycol hydrogels utilizing dipole-dipole interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!