The electrochemical deposition of poly(3,4-ethylenedioxythiophene) (PEDOT) has been carried out previously in the presence of a variety of counterions. Previous studies have shown that elongated nanofibrillar structures of PEDOT would form reproducibly when certain counterions such as poly(acrylic acid) (PAA) were added to the reaction mixture. However, details of the nanofibril nucleation and growth stages were not yet clear. Here, we describe the structural evolution of PEDOT nanofibrils using liquid-phase transmission electron microscopy (LPTEM). We measured the growth velocities of nanofibrils in different directions at various stages of the process and their intensity profiles, and we have estimated the number of EDOT monomers involved. We observed that fibrils initially grew anisotropically in a direction nominally perpendicular to the local edge of the electrodes, with rates that were faster along their lengths as compared those along to their widths and thicknesses. These real-time observations have helped us elucidate the nucleation and growth of PEDOT nanofibrils during electrochemical deposition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.1c02762 | DOI Listing |
Adv Mater
January 2025
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China.
Biomimetic calcification is a micro-crystallization process that mimics the natural biomineralization process, where biomacromolecules regulate the formation of inorganic minerals. In this study, it is presented that a protein-assisted biomimetic calcification method for the in situ synthesis of nitrogen-doped metal-organic framework (MOF) materials. A series of unique core-shell structures are created by utilizing proteins as templates and guiding agents in the nucleation step, creating ideal conditions for shell growth.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
The supported RuO catalysts are known for their synergistic and interfacial effects, which significantly enhance both catalytic activity and stability. However, polymer-supported RuO catalysts have received limited attention due to challenges associated with poor conductivity. In this study, we successfully synthesized the RuO-polytetrafluoroethylene (PTFE) catalyst via a facile annealing process.
View Article and Find Full Text PDFInt J Pharm
January 2025
SSPC Research Centre, Department of Chemical Sciences & Chemical Engineering, Bernal Institute, University of Limerick, Limerick V94 T9PX Ireland. Electronic address:
Atomization-based techniques are widely used in pharmaceutical industry for production of fine drug particles due to their versatility and adaptability. Key performance measure of such techniques is their ability to provide control over critical quality attributes (CQAs) of produced drug particles. CQAs of drug particles produced via atomization critically depend on fluid dynamics of sprays; resulting mixing, heat and mass transfer; distribution of supersaturation and subsequent nucleation and growth of particles.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Quantum Nano Centre, Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
Laser conversion of commercial polymers to laser-induced graphene (LIG) using inexpensive and accessible CO lasers has enabled the rapid prototyping of promising electronic and electrochemical devices. Frequently used to pattern interdigitated supercapacitors, few approaches have been developed to pattern batteries-in particular, full cells. Herein, we report an LIG-based approach to a planar, interdigitated Li-S battery.
View Article and Find Full Text PDFAdv Mater
January 2025
Institute of Thin Film Physics and Applications, Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
Anisotropic carrier transport and deep-level defect of antimony selenosulfide (Sb(S,Se)) absorber are two vital auses restraining the photovoltaic performance of this emerging thin-film solar cell. Herein, chelate engineering is proposed to prepare high-quality Sb(S,Se) film based on hydrothermal deposition approach, which realizes desirable carrier transport and passivated defects by using tetrahedral PO ion in dibasic sodium phosphate (NaHPO, DSP). The PO Lewis structure, on one hand in the form of [(SbO)(PO)] chelate, can adsorb on the polar planes of cadmium sulfide (CdS) layer, promoting the heterogeneous nucleation, and on the other hand, the tetrahedral PO inhibits horizontal growth of (SbS(e)) ribbons due to size effects, thus achieving desirable [hk1] orientation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!