Non-fullerene acceptors (NFAs) with near-infrared (NIR) absorption show promising advantages in organic solar cells (OSCs). However, only a few NFAs can extend the absorption spectra over 1000 nm, and their photovoltaic performance has been unsatisfactory so far. To address this issue, three new NFAs, namely, 6-IFIC, 6-IF2F, and 6-IF4F, were synthesized by simultaneously introducing π-bridge units and different end groups. The π-bridge unit enlarges the conjugation and planarizes the molecular geometry, leading to intense absorption in the NIR range. The asymmetric configuration provides a large dipole moment, enhances the intermolecular interaction, and tunes the miscibility, consequently being beneficial for achieving a favorable morphology in OSCs. When blended with a donor polymer PTB7-Th, the 6-IF2F-based OSC yields the best power conversion efficiency (PCE) of 11.20%, which is among the highest PCEs based on NFAs with absorption over 1000 nm. More importantly, the absorption of the blend film provides a transparency window in the visible range from 400 and 650 nm. Therefore, the semitransparent OSCs based on these three NFAs can achieve over 28% average visible transmittance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c13404 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!