Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Advances in the understanding of developmental brain disorders such as autism spectrum disorders (ASDs) are being achieved through human neurogenetics such as, for example, identifying de novo mutations in SYNGAP1 as one relatively common cause of ASD. A recently developed rat line lacking the calcium/lipid binding (C2) and GTPase activation protein (GAP) domain may further help uncover the neurobiological basis of deficits in children with ASD. This study focused on social dominance in the tube test using Syngap (rats heterozygous for the C2/GAP domain deletion) as alterations in social behaviour are a key facet of the human phenotype. Male animals of this line living together formed a stable intra-cage hierarchy, but they were submissive when living with wild-type (WT) cage-mates, thereby modelling the social withdrawal seen in ASD. The study includes a detailed analysis of specific behaviours expressed in social interactions by WT and mutant animals, including the observation that when the Syngap mutants that had been living together had separate dominance encounters with WT animals from other cages, the two higher ranking Syngap rats remained dominant whereas the two lower ranking mutants were still submissive. Although only observed in a small subset of animals, these findings support earlier observations with a rat model of Fragile X, indicating that their experience of winning or losing dominance encounters has a lasting influence on subsequent encounters with others. Our results highlight and model that even with single-gene mutations, dominance phenotypes reflect an interaction between genotypic and environmental factors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614819 | PMC |
http://dx.doi.org/10.1111/ejn.15500 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!