Circadian gene × environment perturbations influence alcohol drinking in Cryptochrome-deficient mice.

Addict Biol

Circadian Biology Group, Department of Molecular Neurobiology, Clinic of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University, Munich, Germany.

Published: January 2022

Alcohol use disorder (AUD) is a widespread addiction disorder with severe consequences for health. AUD patients often suffer from sleep disturbances and irregular daily patterns. Conversely, disruptions of circadian rhythms are considered a risk factor for AUD and alcohol relapses. In this study, we investigated the extent to which circadian genetic and environmental disruptions and their interaction alter alcohol drinking behaviour in mice. As a model of genetic circadian disruption, we used Cryptochrome1/2-deficient (Cry1/2 ) mice with strongly suppressed circadian rhythms and found that they exhibit significantly reduced preference for alcohol but increased incentive motivation to obtain it. Similarly, we found that low circadian SCN amplitude correlates with reduced alcohol preference in WT mice. Moreover, we show that the low alcohol preference of Cry1/2 mice concurs with high corticosterone and low levels of the orexin precursor prepro-orexin and that WT and Cry1/2 mice respond differently to alcohol withdrawal. As a model of environmentally induced disruption of circadian rhythms, we exposed mice to a "shift work" light/dark regimen, which also leads to a reduction in their alcohol preference. Interestingly, this effect is even more pronounced when genetic and environmental circadian perturbations interact in Cry1/2 mice under "shift work" conditions. In conclusion, our study demonstrates that in mice, disturbances in circadian rhythms have pronounced effects on alcohol consumption as well as on physiological factors and other behaviours associated with AUD and that the interaction between circadian genetic and environmental disturbances further alters alcohol consumption behaviour.

Download full-text PDF

Source
http://dx.doi.org/10.1111/adb.13105DOI Listing

Publication Analysis

Top Keywords

circadian rhythms
16
cry1/2 mice
16
genetic environmental
12
alcohol preference
12
alcohol
11
circadian
10
mice
9
alcohol drinking
8
circadian genetic
8
mice "shift
8

Similar Publications

Ultrasound modulation of melatonin release from pineal glands in vitro.

Ultrasonics

January 2025

Department of Biomedical Engineering, The George Washington University, 800 22 nd St. NW Suite 5000, Washington, DC 20052, United States of America. Electronic address:

Objectives: In this study, we aim to investigate whether therapeutic ultrasound can modulate the release of melatonin from the pineal gland-either increasing or decreasing its levels-and to assess the safety of this technique. This research could address a significant clinical need by providing a noninvasive method to potentially regulate sleep and circadian rhythms through the targeted modulation of melatonin.

Methods: Rat pineal glands were placed in a well with a Krebs Ringer Buffer solution.

View Article and Find Full Text PDF

Objective: To explore the potential correlation between gallstone disease (GSD) prevalence and circadian syndrome (CircS).

Methods: The cross-sectional research utilized data spanning 2017 to March 2020, sourced from the National Health and Nutrition Examination Survey (NHANES). The GSD data were collected via questionnaires, with appropriate sample weights applied to ensure the study population was representative.

View Article and Find Full Text PDF

Thyroid function is closely linked to circadian rhythms, but the relationship between the frequency of night eating and thyroid function remains unclear. Our study aimed to investigate the association between night eating frequency and its impact on thyroid function and sensitivity. This study included 6093 participants from the U.

View Article and Find Full Text PDF

The circadian cycle is a fundamental biological rhythm that governs many physiological functions across nearly all living organisms. In the gastrointestinal tract, activities such as gut motility, hormone synthesis, and communication between the gut, central nervous system and microbiome all fluctuate in alignment with the circadian cycle. The enteric nervous system (ENS) is critical for co-ordinating many of these activities, however, how its activity is governed by the circadian cycle remains unknown.

View Article and Find Full Text PDF

Introduction: Circadian rhythms are responsible for physiological and behavioral processes coordinated in a 24-hour cycle. We investigated whether untimed, long-term voluntary wheel access mitigated circadian disruption and facilitated re-entrainment. Methods: Thirty-four C57Bl/6 J mice (n = 21 males, n = 14 females) were used in this experiment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!