Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: Clinical applicability of renal arterial spin labeling (ASL) MRI is hampered because of time consuming and observer dependent post-processing, including manual segmentation of the cortex to obtain cortical renal blood flow (RBF). Machine learning has proven its value in medical image segmentation, including the kidneys. This study presents a fully automatic workflow for renal cortex perfusion quantification by including machine learning-based segmentation.
Methods: Fully automatic workflow was achieved by construction of a cascade of 3 U-nets to replace manual segmentation in ASL quantification. All 1.5T ASL-MRI data, including M , T , and ASL label-control images, from 10 healthy volunteers was used for training (dataset 1). Trained cascade performance was validated on 4 additional volunteers (dataset 2). Manual segmentations were generated by 2 observers, yielding reference and second observer segmentations. To validate the intended use of the automatic segmentations, manual and automatic RBF values in mL/min/100 g were compared.
Results: Good agreement was found between automatic and manual segmentations on dataset 1 (dice score = 0.78 ± 0.04), which was in line with inter-observer variability (dice score = 0.77 ± 0.02). Good agreement was confirmed on dataset 2 (dice score = 0.75 ± 0.03). Moreover, similar cortical RBF was obtained with automatic or manual segmentations, on average and at subject level; with 211 ± 31 mL/min/100 g and 208 ± 31 mL/min/100 g (P < .05), respectively, with narrow limits of agreement at -11 and 4.6 mL/min/100 g. RBF accuracy with automated segmentations was confirmed on dataset 2.
Conclusion: Our proposed method automates ASL quantification without compromising RBF accuracy. With quick processing and without observer dependence, renal ASL-MRI is more attractive for clinical application as well as for longitudinal and multi-center studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9297892 | PMC |
http://dx.doi.org/10.1002/mrm.29016 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!