Inborn errors of metabolism (IEMs) comprise a diverse group of individually rare monogenic disorders that affect metabolic pathways. Mutations lead to enzymatic deficiency or dysfunction, which results in intermediate metabolite accumulation or deficit leading to disease phenotypes. Currently, treatment options for many IEMs are insufficient. Rarity of individual IEMs hampers therapy development and phenotypic and genetic heterogeneity suggest beneficial effects of personalized approaches. Recently, cultures of patient-own liver-derived intrahepatic cholangiocyte organoids (ICOs) have been established. Since most metabolic genes are expressed in the liver, patient-derived ICOs represent exciting possibilities for in vitro modeling and personalized drug testing for IEMs. However, the exact application range of ICOs remains unclear. To address this, we examined which metabolic pathways can be studied with ICOs and what the potential and limitations of patient-derived ICOs are to model metabolic functions. We present functional assays in patient ICOs with defects in branched-chain amino acid metabolism (methylmalonic acidemia), copper metabolism (Wilson disease), and transporter defects (cystic fibrosis). We discuss the broad range of functional assays that can be applied to ICOs, but also address the limitations of these patient-specific cell models. In doing so, we aim to guide the selection of the appropriate cell model for studies of a specific disease or metabolic process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9298016PMC
http://dx.doi.org/10.1002/jimd.12450DOI Listing

Publication Analysis

Top Keywords

potential limitations
8
intrahepatic cholangiocyte
8
cholangiocyte organoids
8
inborn errors
8
errors metabolism
8
metabolic pathways
8
patient-derived icos
8
functional assays
8
icos
7
metabolic
5

Similar Publications

Negative capacitance (NC) effects in ferroelectrics can potentially break fundamental limits of power dissipation known as "Boltzmann tyranny." However, the origin of transient NC of ferroelectrics, which is attributed to two different mechanisms involving free-energy landscape and nucleation, is under intense debate. Here, we report the coexistence of transient NC and an S-shaped anomaly during the switching of ferroelectric hexagonal ferrites capacitor in an RC circuit.

View Article and Find Full Text PDF

The tomography of photonic quantum states is key in quantum optics, impacting quantum sensing, computing, and communication. Conventional detectors are limited in their temporal and spatial resolution, hampering high-rate quantum communication and local addressing of photonic circuits. Here, we propose to utilize free electron-photon interactions for quantum state tomography, introducing electron homodyne detection with potential for femtosecond-temporal and nanometer-spatial resolutions.

View Article and Find Full Text PDF

Background: Mental health chatbots have emerged as a promising tool for providing accessible and convenient support to individuals in need. Building on our previous research on digital interventions for loneliness and depression among Korean college students, this study addresses the limitations identified and explores more advanced artificial intelligence-driven solutions.

Objective: This study aimed to develop and evaluate the performance of HoMemeTown Dr.

View Article and Find Full Text PDF

The increasing cultivation of perennial C4 grass known as Miscanthus spp. for biomass production holds promise as a sustainable source of renewable energy. Unlike the sterile triploid hybrid of M.

View Article and Find Full Text PDF

Glutathione-Responsive Metal-Organic-Framework-Derived MnO/(A/R)TiO Nanoparticles for Enhanced Synergistic Sonodynamic/Chemodynamic/Immunotherapy.

ACS Nano

January 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.

Despite the potential of sonodynamic therapy (SDT) in treating malignant tumors, the lack of effective sonosensitizers has limited its clinical implementation. In this study, we explored the relationship between the heteroatom doping concentration in metal-organic frameworks and interface formation after pyrolysis by regulating the addition of manganese sources and successfully derived Z-scheme heterojunctions MnO/(A/R)TiO (MTO) in situ from MIL-125-NH (Ti/Mn). The electron transfer pathway introduced by interfacial contact promoted carrier separation and greatly preserved the effective redox components, significantly influencing the performance of reactive oxygen species generation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!