Artificial Intelligence/Machine Learning (AI/ML) algorithms may speed up the design of DADNP systems formed by Antibacterial Drugs (AD) and Nanoparticles (NP). In this work, we used IFPTML = Information Fusion (IF) + Perturbation-Theory (PT) + Machine Learning (ML) algorithm for the first time to study of a large dataset of putative DADNP systems composed by >165 000 ChEMBL AD assays and 300 NP assays . multiple bacteria species. We trained alternative models with Linear Discriminant Analysis (LDA), Artificial Neural Networks (ANN), Bayesian Networks (BNN), K-Nearest Neighbour (KNN) and other algorithms. IFPTML-LDA model was simpler with values of Sp ≈ 90% and Sn ≈ 74% in both training (>124 K cases) and validation (>41 K cases) series. IFPTML-ANN and KNN models are notably more complicated even when they are more balanced Sn ≈ Sp ≈ 88.5%-99.0% and AUROC ≈ 0.94-0.99 in both series. We also carried out a simulation (>1900 calculations) of the expected behavior for putative DADNPs in 72 different biological assays. The putative DADNPs studied are formed by 27 different drugs with multiple classes of NP and types of coats. In addition, we tested the validity of our additive model with 80 DADNP complexes experimentally synthetized and biologically tested (reported in >45 papers). All these DADNPs show values of MIC < 50 μg mL (cutoff used) better that MIC of AD and NP alone (synergistic or additive effect). The assays involve DADNP complexes with 10 types of NP, 6 coating materials, NP size range 5-100 nm . 15 different antibiotics, and 12 bacteria species. The IFPTML-LDA model classified correctly 100% (80 out of 80) DADNP complexes as biologically active. IFPMTL additive strategy may become a useful tool to assist the design of DADNP systems for antibacterial therapy taking into consideration only information about AD and NP components by separate.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1nr04178aDOI Listing

Publication Analysis

Top Keywords

dadnp systems
12
dadnp complexes
12
machine learning
8
design dadnp
8
bacteria species
8
ifptml-lda model
8
putative dadnps
8
dadnp
6
5
learning discovery
4

Similar Publications

Artificial Intelligence/Machine Learning (AI/ML) algorithms may speed up the design of DADNP systems formed by Antibacterial Drugs (AD) and Nanoparticles (NP). In this work, we used IFPTML = Information Fusion (IF) + Perturbation-Theory (PT) + Machine Learning (ML) algorithm for the first time to study of a large dataset of putative DADNP systems composed by >165 000 ChEMBL AD assays and 300 NP assays . multiple bacteria species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!