Background And Purpose: Stereotactic body radiation therapy (SBRT) has become a standard-of-care option for localized prostate cancer. While prostate SBRT has traditionally been delivered using computed-tomography-guided radiation therapy (CTgRT), MR-imaging-guided radiation therapy (MRgRT) is now available. MRgRT offers real-time soft-tissue visualization and ease of adaptive planning, obviating the need for fiducial markers, and potentially allowing for smaller planning target volume (PTV) margins. Although prior studies have focused on evaluating the cost-effectiveness of MRgRT vs CTgRT from a payor perspective, the difference in provider costs to deliver such treatments remains unknown. This study thus used time-driven activity-based costing (TDABC) to determine the difference in provider resources consumed by delivering prostate SBRT via MRgRT vs CTgRT.

Methods: Data was collected from a single academic institution where prostate SBRT is routinely performed using both CTgRT and MRgRT. Five-fraction SBRT (40 Gy total dose) was assumed to be delivered through volumetric-modulated arc therapy for CTgRT patients, and through step-and-shoot, fixed-gantry intensity-modulated radiation therapy for MRgRT patients. Process maps were constructed for each portion of the radiation delivery process via interviews/surveys with departmental personnel and by measuring CTgRT and MRgRT treatment times. Prior to simulation, only CTgRT patients underwent placement of three gold fiducial markers. Personnel capacity cost rates were calculated by dividing total personnel costs by the annual minutes worked by a given personnel. Equipment costs included both an annualized purchase price and annual maintenance costs. Ultimately, the total costs of care encompassing personnel, space/equipment, and materials were aggregated across the entire chain of care for both CTgRT and MRgRT patients in a base case.

Results: Direct costs associated with delivering a 5-fraction course of prostate SBRT were $1,497 higher with MRgRT than with CTgRT - comprised of personnel costs ($210 higher with MRgRT), space/equipment ($1,542 higher with MRgRT), and materials ($255 higher with CTgRT). Only CTgRT patients underwent fiducial placement, which accounted for $591. MRgRT patients were assumed to undergo both CT simulation (for electron density calculation) and MRI simulation, with the former accounting for $168. Mean time spent by patients in the treatment vault per fraction was 20 minutes (range 15-26 minutes) for CTgRT, and 31 minutes (range 30-34 minutes) for MRgRT. Patient time spent during fiducial placement (CTgRT only) was 60 minutes. Modifying the number of fractions treated would result in the cost difference of $1,497 (5 fractions) changing to $441 (1 fraction) or to $2,025 (7 fractions).

Conclusion: This study provides an approximate comparison of the direct resources required for a radiation oncology provider to deliver prostate SBRT with CTgRT vs MRgRT. We await findings from the currently accruing phase III MIRAGE trial, which is comparing these modalities, and will subsequently measure acute and late genitourinary/gastrointestinal (GU/GI) toxicities, temporal change in quality-of-life outcomes, and 5-year biochemical, recurrence-free survival. Results from studies comparing the efficacy and safety of MRgRT vs CTgRT will ultimately allow us to put this cost difference into context.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8525878PMC

Publication Analysis

Top Keywords

prostate sbrt
24
radiation therapy
16
ctgrt mrgrt
16
mrgrt
15
ctgrt
14
mrgrt ctgrt
12
ctgrt patients
12
mrgrt patients
12
higher mrgrt
12
time-driven activity-based
8

Similar Publications

The management of bone metastases (BoM) requires a multidisciplinary approach to prevent complications, necessitating updated knowledge in light of the rapid advancements in systemic treatments and surgical, interventional radiology or radiation techniques. This review aims to discuss efficacy of new systemic treatments on BoM, the benefits of radiotherapy adjunction, and the optimal methods for combining them. Preliminary evidence suggesting reduced efficacy of immune checkpoint inhibitors (ICI), and several multi-kinase inhibitors regarding BoM may encourage early use of radiotherapy (RT).

View Article and Find Full Text PDF

MR-Guided Adaptive Radiotherapy in Localized Prostate Cancer.

Technol Cancer Res Treat

January 2025

Advanced Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Cancer Care Center, Verona, Negrar, Italy.

MR-guided radiotherapy (MRgRT) is novel treatment modality in Radiation Oncology that could allow a higher precision and tolerability of Radiation Treatments. This modality is possible due to dedicated systems consisting of a MR scanner mounted on a conventional linac and software that permit daily online treatment plan adaptation. Prostate cancer (PC) is one of the most common malignancies in RO clinical practice and currently under investigation with this new technology.

View Article and Find Full Text PDF

Dosimetric comparison of CyberKnife and conventional linac prostate SBRT plans: analysis of the PACE-B Study.

Int J Radiat Oncol Biol Phys

January 2025

The Royal Marsden NHS Foundation Trust, London SM2 5PT, UK; Radiotherapy and Imaging Division, Institute of Cancer Research, London SM2 5NG, UK.

Purpose: In the PACE-B study, a non-randomised comparison of toxicity outcomes between stereotactic body radiotherapy (SBRT) platforms revealed fewer urinary side-effects with CyberKnife (CK) compared to conventional linac (CL) SBRT. This analysis compares baseline characteristics and planning dosimetry between the CK-SBRT and CL-SBRT cohorts in PACE-B, aiming to provide insight into possible reasons for differing toxicity outcomes between the platforms.

Methods: Dosimetric parameters for the surrogate urethra (SU), contoured urethra, bladder, bladder trigone (BT), and rectum were extracted from available CT planning scans of PACE-B SBRT patients.

View Article and Find Full Text PDF

Purpose: In prostate cancer patients, high radiation doses to the urethra have been associated with an increased risk of severe genitourinary toxicity following dose-escalated radiotherapy. Urethra-sparing techniques have emerged as a promising approach to reduce urinary toxicity. This international survey aims to evaluate current global practices in urethra-sparing and explore future directions for the implementation of this technique in external beam radiotherapy (EBRT) for prostate cancer.

View Article and Find Full Text PDF

Validation of a Monte Carlo-based dose calculation engine including the 1.5 T magnetic field for independent dose-check in MRgRT.

Phys Med

January 2025

Department of Radiation Oncology, IRCCS Sacro Cuore Don Calabria Hospital, Via Don A. Sempreboni 5, 37024 Negrar di Valpolicella, VR, Italy; University of Brescia, Brescia, Italy.

Purpose: Adaptive MRgRT by 1.5 T MR-linac requires independent verification of the plan-of-the-day by the primary TPS (Monaco) (M). Here we validated a Monte Carlo-based dose-check including the magnetostatic field, SciMoCa (S).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!