Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The (opto)electronic properties of TaN photoelectrodes are often dominated by defects, such as oxygen impurities, nitrogen vacancies, and low-valent Ta cations, impeding fundamental studies of its electronic structure, chemical stability, and photocarrier transport. Here, we explore the role of ammonia annealing following direct reactive magnetron sputtering of tantalum nitride thin films, achieving near-ideal stoichiometry, with significantly reduced native defect and oxygen impurity concentrations. By analyzing structural, optical, and photoelectrochemical properties as a function of ammonia annealing temperature, we provide new insights into the basic semiconductor properties of TaN, as well as the role of defects on its optoelectronic characteristics. Both the crystallinity and material quality improve up to 940 °C, due to elimination of oxygen impurities. Even higher annealing temperatures cause material decomposition and introduce additional disorder within the TaN lattice, leading to reduced photoelectrochemical performance. Overall, the high material quality enables us to unambiguously identify the nature of the TaN bandgap as indirect, thereby resolving a long-standing controversy regarding the most fundamental characteristic of this material as a semiconductor. The compact morphology, low defect content, and high optoelectronic quality of these films provide a basis for further optimization of photoanodes and may open up further application opportunities beyond photoelectrochemical energy conversion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8454490 | PMC |
http://dx.doi.org/10.1039/d1ta05282a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!