A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Polymethyl methacrylate cure time in simulated in vivo total knee arthroplasty versus in vitro conditions. | LitMetric

Background: The present means of confirming the cure of intra-operative polymethyl methacrylate (PMMA) cement are to wait for the remainder cement to harden. To our knowledge, there is no available technique to determine the precise moment of cure for in-vivo cement beneath the tibial tray. This study uses a novel means to determine cement curing time in two environments. One environment represents the operating theater, and the other environment attempts to model cement conditions under the tibial tray during surgery.

Materials And Methods: We determined the temperature-versus-time plot of cement curing using the following two temperature sensors: one in a simulated implanted tibial tray and another in the remainder cement. We performed 55 tests using dental methyl methacrylate cement mixed in the same ratio as the orthopedic cement. To simulate in vivo conditions, a simulated stainless-steel tibial tray was implanted on a cancellous bone substitute (Sawbones, Vashon Island, WA, USA) using standard cement technique and subsequently placed in a 90°F (32.2 °C) circulating water bath. We positioned a temperature sensor in the cement mantel and positioned a second sensor in a portion of the remaining cement. The temperature from both sensors was measured simultaneously, beginning at 5 min after mixing and continuing for 20 min. The first derivative of the temperature provided the precise curing time for each condition. We analyzed the results of 55 repeated experiments with an independent samples t-test.

Results: With the described technique, we were able to accurately determine the moment of cure of the cement beneath the simulated tray. There was a mean difference between cure time of 5 min and 26 s (p value < 0.001) between the two conditions.

Conclusions: We validated that our technique was successful in determining the precise time to cure in two different environments.

Level Of Evidence: This was not a clinical trial and did not involve patients as such the level of evidence was Grade A: Consistent 1 and 2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8527682PMC
http://dx.doi.org/10.1186/s13018-021-02790-yDOI Listing

Publication Analysis

Top Keywords

tibial tray
16
cement
13
polymethyl methacrylate
8
cure time
8
remainder cement
8
moment cure
8
cement beneath
8
cement curing
8
curing time
8
temperature sensors
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!