How ageing and blindness affect egocentric and allocentric spatial memory.

Q J Exp Psychol (Hove)

Laboratory of Cognitive Science and Immersive Virtual Reality, CS-IVR, Department of Psychology, University of Campania "Luigi Vanvitelli," Caserta, Italy.

Published: September 2022

Egocentric (subject-to-object) and allocentric (object-to-object) spatial reference frames are fundamental for representing the position of objects or places around us. The literature on spatial cognition in blind people has shown that lack of vision may limit the ability to represent spatial information in an allocentric rather than egocentric way. Furthermore, much research with sighted individuals has reported that ageing has a negative impact on spatial memory. However, as far as we know, no study has assessed how ageing may affect the processing of spatial reference frames in individuals with different degrees of visual experience. To fill this gap, here we report data from a cross-sectional study in which a large sample of young and elderly participants (160 participants in total) who were congenitally blind (long-term visual deprivation), adventitiously blind (late onset of blindness), blindfolded sighted (short-term visual deprivation) and sighted (full visual availability) performed a spatial memory task that required egocentric/allocentric distance judgements with regard to memorised stimuli. The results showed that egocentric judgements were better than allocentric ones and above all that the ability to process allocentric information was influenced by both age and visual status. Specifically, the allocentric judgements of congenitally blind elderly participants were worse than those of all other groups. These findings suggest that ageing and congenital blindness can contribute to the worsening of the ability to represent spatial relationships between external, non-body-centred anchor points.

Download full-text PDF

Source
http://dx.doi.org/10.1177/17470218211056772DOI Listing

Publication Analysis

Top Keywords

spatial memory
12
spatial
8
spatial reference
8
reference frames
8
ability represent
8
represent spatial
8
elderly participants
8
congenitally blind
8
visual deprivation
8
allocentric
6

Similar Publications

Sub-Chronic 30 mg/kg Iron Treatment Induces Spatial Cognition Impairment and Brain Oxidative Stress in Wistar Rats.

Biol Trace Elem Res

January 2025

Laboratory Functional Physiology and Bio-Resources Valorisation, Higher Institute of Biotechnology of Beja, University of Jendouba, Avenue Habib Bourguiba BP 382, 9000, Beja, Tunisia.

Iron overload has been shown to have deleterious effects in the brain through the formation of reactive oxygen species, which ultimately may contribute to neurodegenerative disorders. Accordingly, rodent studies have indicated that systemic administration of iron produces excess iron in the brain and results in behavioral and cognitive deficits. To what extent cognitive abilities are affected and which neurobiological mechanisms underlie those deficits remain to be more fully characterized.

View Article and Find Full Text PDF

Short-term memory for sequences of verbal items such as written words is reliably impaired by task-irrelevant background sounds, a phenomenon known as the "Irrelevant Sound Effect" (ISE). Different theoretical accounts have been proposed to explain the mechanisms underlying the ISE. Some of these assume specific interference between obligatory sound processing and phonological or serial order representations generated during task performance, whereas other posit that background sounds involuntarily divert attention away from the focal task.

View Article and Find Full Text PDF

Background: Although preterm birth is associated with deficits in both motor and cognitive functioning, the association between early motor skills and cognitive outcomes at a later age remains underexplored.

Aim: To evaluate associations between motor skills at age 5.5 and cognitive functioning at age 8.

View Article and Find Full Text PDF

Extensive research has demonstrated endurance exercise to be neuroprotective. Whether these neuroprotective benefits are mediated, in part, by hepatic ketone production remains unclear. To investigate the role of hepatic ketone production on brain health during exercise, healthy 6-month-old female rats underwent viral knockdown of the rate-limiting enzyme in the liver that catalyses the first reaction in ketogenesis: 3-hydroxymethylglutaryl-CoA synthase 2 (HMGCS2).

View Article and Find Full Text PDF

Cd99l2 regulates excitatory synapse development and restrains immediate-early gene activation.

Cell Rep

January 2025

Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea; Neuroscience Research Institute, Medical Research Center, Seoul National University, Seoul 03080, South Korea; Transplantation Research Institute, Medical Research Center, Seoul National University, Seoul 03080, South Korea. Electronic address:

Cd99 molecule-like 2 (Cd99l2) is a type I transmembrane protein that plays a role in the transmigration of leukocytes across vascular endothelial cells. Despite its high expression in the brain, the role of Cd99l2 remains elusive. We find that Cd99l2 is expressed primarily in neurons and positively regulates neurite outgrowth and the development of excitatory synapses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!