Objective: Patients with end-stage renal disease depend on hemodialysis for survival. Although arteriovenous fistulae (AVF) are the preferred vascular access for hemodialysis, the primary success rate of AVF is only 30% to 50% within 6 months, showing an urgent need for improvement. PD-L1 (programmed death ligand 1) is a ligand that regulates T-cell activity. Since T cells have an important role during AVF maturation, we hypothesized that PD-L1 regulates T cells to control venous remodeling that occurs during AVF maturation. Approach and results: In the mouse aortocaval fistula model, anti-PD-L1 antibody (200 mg, 3×/wk intraperitoneal) was given to inhibit PD-L1 activity during AVF maturation. Inhibition of PD-L1 increased T-helper type 1 cells and T-helper type 2 cells but reduced regulatory T cells to increase M1-type macrophages and reduce M2-type macrophages; these changes were associated with reduced vascular wall thickening and reduced AVF patency. Inhibition of PD-L1 also inhibited smooth muscle cell proliferation and increased endothelial dysfunction. The effects of anti-PD-L1 antibody on adaptive venous remodeling were diminished in nude mice; however, they were restored after T-cell transfer into nude mice, indicating the effects of anti-PD-L1 antibody on venous remodeling were dependent on T cells.
Conclusions: Regulation of PD-L1 activity may be a potential therapeutic target for clinical translation to improve AVF maturation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8664128 | PMC |
http://dx.doi.org/10.1161/ATVBAHA.121.316380 | DOI Listing |
Aim: To evaluate characteristics of atherosclerotic plaques (ASP) remaining after percutaneous coronary intervention (PCI) in patients with acute coronary syndrome (ACS) by coronary computed tomography angiography (CCTA).
Material And Methods: Among 249 patients (193 men) with ACS aged 58±10 years, 183 (73.5%) had myocardial infarction, 66 (26.
BMC Cardiovasc Disord
January 2025
Cardio/Endo-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria.
Background: Hypertension is a major cause of cardiac dysfunction. The earliest manifestation is left ventricular remodeling/hypertrophy. The occurrence of adverse cardiac remodeling and outcomes occurs irrespective of age in blacks.
View Article and Find Full Text PDFBiomedicines
November 2024
Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
Background: When conventional trans-venous CS lead placement fails, trans-septal endocardial left ventricle lead placement is an alternative technique used to capture the left ventricle endocardially; however, its use is limited due to a lack of evidence, practice uptake, and clinical trials.
Methods: In this single-center cohort study, we evaluated the efficiency of the procedure, post-procedural complication rate, rate of thromboembolic events, overall survival rate, and changes in the echocardiographic parameters, brain natriuretic peptide (BNP) level, and New York Heart Association (NYHA) class, both before and after TSLV lead implantation.
Results: The TSLV lead implant is safe and improves EF, LVEDV, LVESV, and LVIDd.
Front Endocrinol (Lausanne)
January 2025
Institute of Health and Biological Science, Federal University of Mato Grosso, Barra do Garças, Brazil.
Introduction: Excess weight during pregnancy is a condition that can affect both mother and fetus, through the maternal-fetal interface, which is constituted by the placenta and umbilical cord. The umbilical vein is responsible for transporting oxygen and nutrients to the fetus, and its proper functioning depends on the integrity of its structure. The remodeling of the umbilical vein represents one of the causes of inadequate transport of nutrients to the fetus, being potentially harmful.
View Article and Find Full Text PDFCell Stem Cell
December 2024
Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden. Electronic address:
Wound healing is vital for human health, yet the details of cellular dynamics and coordination in human wound repair remain largely unexplored. To address this, we conducted single-cell multi-omics analyses on human skin wound tissues through inflammation, proliferation, and remodeling phases of wound repair from the same individuals, monitoring the cellular and molecular dynamics of human skin wound healing at an unprecedented spatiotemporal resolution. This singular roadmap reveals the cellular architecture of the wound margin and identifies FOSL1 as a critical driver of re-epithelialization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!