AI Article Synopsis

Article Abstract

Post-transcriptional modifications affect tRNA biology and are closely associated with human diseases. However, progress on the functional analysis of tRNA modifications in metazoans has been slow because of the difficulty in identifying modifying enzymes. For example, the biogenesis and function of the prevalent N2-methylguanosine (m2G) at the sixth position of tRNAs in eukaryotes has long remained enigmatic. Herein, using a reverse genetics approach coupled with RNA-mass spectrometry, we identified that THUMP domain-containing protein 3 (THUMPD3) is responsible for tRNA: m2G6 formation in human cells. However, THUMPD3 alone could not modify tRNAs. Instead, multifunctional methyltransferase subunit TRM112-like protein (TRMT112) interacts with THUMPD3 to activate its methyltransferase activity. In the in vitro enzymatic assay system, THUMPD3-TRMT112 could methylate all the 26 tested G6-containing human cytoplasmic tRNAs by recognizing the characteristic 3'-CCA of mature tRNAs. We also showed that m2G7 of tRNATrp was introduced by THUMPD3-TRMT112. Furthermore, THUMPD3 is widely expressed in mouse tissues, with an extremely high level in the testis. THUMPD3-knockout cells exhibited impaired global protein synthesis and reduced growth. Our data highlight the significance of the tRNA: m2G6/7 modification and pave a way for further studies of the role of m2G in sperm tRNA derived fragments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8599901PMC
http://dx.doi.org/10.1093/nar/gkab927DOI Listing

Publication Analysis

Top Keywords

trna
6
thumpd3-trmt112 m2g
4
m2g methyltransferase
4
methyltransferase working
4
working broad
4
broad range
4
range trna
4
trna substrates
4
substrates post-transcriptional
4
post-transcriptional modifications
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!