Objectives: To analyze central auditory maturation in term and preterm infants during the first 3 months of life by comparing the latency and amplitude of cortical auditory-evoked potential at different frequencies.

Methods: In this study, 17 term and 18 preterm infants were examined; all had tested positive on the neonatal hearing screening test. Cortical auditory potential was investigated during the first and third months of life. The response of the cortical auditory-evoked potential was investigated at frequencies of 500, 1000, 2000, and 4000 Hz. The latency and amplitude of the cortical response were automatically detected and manually analyzed by three researchers with experience in electrophysiology. The results were compared using analysis of variance and the Bonferroni test. A significance level of 5% was used for all analyses.

Results: Latency values of cortical auditory-evoked potential in the first month of birth were significantly higher than those in the third month, and latency values of the preterm group were higher than those of the term group, regardless of the frequency and time of evaluation. In general, the latency of the cortical auditory-evoked potential was higher at high frequencies. Amplitude values in the third month of life were significantly higher than those in the first month for term and preterm infants.

Conclusion: Central auditory maturation was observed in both groups but with different results between those born at term and preterm, with latencies of cortical auditory-evoked potential higher for the preterm group and at high frequencies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8491591PMC
http://dx.doi.org/10.6061/clinics/2021/e2944DOI Listing

Publication Analysis

Top Keywords

cortical auditory-evoked
24
auditory-evoked potential
24
term preterm
20
central auditory
12
auditory maturation
12
preterm infants
12
cortical
8
maturation term
8
infants months
8
months life
8

Similar Publications

Alteration of responses to salient stimuli occurs in a wide range of brain disorders and may be rooted in pathophysiological brain state dynamics. Specifically, tonic and phasic modes of activity in the reticular activating system (RAS) influence, and are influenced by, salient stimuli, respectively. The RAS influences the spectral characteristics of activity in the neocortex, shifting the balance between low- and high-frequency fluctuations.

View Article and Find Full Text PDF

At the cortical level, the central auditory neural system (CANS) includes primary and secondary areas. So far, much research has focused on recording fronto-central auditory evoked potentials/responses (P1-N1-P2), originating mainly from the primary auditory areas, to explore the neural processing in the auditory cortex. However, less is known about the secondary auditory areas.

View Article and Find Full Text PDF

Despite the long history of the horse-human bond, our understanding of the brain and mind of horses remains limited due to the lack of methods to investigate their brain functions. This study introduces a novel methodology for completely non-invasive, multi-channel recording of electroencephalography (EEG) and evoked potentials in awake horses to examine equine auditory cortical processing. The new approach utilizes specially designed brush-shaped active electrodes that facilitate stable signal acquisition through the hair coat by penetrating electrode pins and integrated pre-amplifiers.

View Article and Find Full Text PDF

Neural tracking of the speech envelope predicts binaural unmasking.

Eur J Neurosci

January 2025

Experimental Otorhinolaryngology, Department of Neurosciences, KU Leuven - University of Leuven, Leuven, Belgium.

Binaural unmasking is a remarkable phenomenon that it is substantially easier to detect a signal in noise when the interaural parameters of the signal are different from those of the noise - a useful mechanism in so-called cocktail party scenarios. In this study, we investigated the effect of binaural unmasking on neural tracking of the speech envelope. We measured EEG in 8 participants who listened to speech in noise at a fixed signal-to-noise ratio, in two conditions: one where speech and noise had the same interaural phase difference (both speech and noise having an opposite waveform across ears, SπNπ), and one where the interaural phase difference of the speech was different from that of the noise (only the speech having an opposite waveform across ears, SπN).

View Article and Find Full Text PDF

Background: Difficulties with speech-in-noise perception in autism spectrum disorders (ASD) may be associated with impaired analysis of speech sounds, such as vowels, which represent the fundamental phoneme constituents of human speech. Vowels elicit early (< 100 ms) sustained processing negativity (SPN) in the auditory cortex that reflects the detection of an acoustic pattern based on the presence of formant structure and/or periodic envelope information (f0) and its transformation into an auditory "object".

Methods: We used magnetoencephalography (MEG) and individual brain models to investigate whether SPN is altered in children with ASD and whether this deficit is associated with impairment in their ability to perceive speech in the background of noise.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!