A cationic microporous composite polymer (120-TMA@Fe) bearing free exchangeable chloride anions alongside easy magnetic separation was crafted through post-polymerization structure modulation. The precursor polymer 120-Cl was synthesized via an "external cross-linking" strategy in a straightforward one-pot Friedel-Crafts reaction. Subsequently, a cationic network accommodating magnetic FeO nanoparticles, viz., 120-TMA@Fe was fabricated through chemical modifications. 120-TMA@Fe displayed excellent adsorption proficiency both in terms of rapid kinetics and maximum uptake capacity when screened for a wide range of organic micropollutants of various categories. Amongst the tested pollutants, including anionic dyes, aromatic models, plastic components, and pharmaceuticals, 120-TMA@Fe illustrated exceptional performance in removing all of these model pollutants with adsorption equilibrium reaching within only 5 min. The Langmuir adsorption isotherm model determined the theoretical maximum uptake capacity () of 120-TMA@Fe to be 357 mg g for methyl orange dye, 555 mg g for plasticizer bisphenol A, and 285 mg g for antibiotic ibuprofen. Additionally, 120-TMA@Fe showed unaltered performance upon harsh chemical treatment as well as in complex real-world samples. The potency of 120-TMA@Fe was further supported by its outstanding regeneration performance up to 10 cycles.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c14819DOI Listing

Publication Analysis

Top Keywords

organic micropollutants
8
maximum uptake
8
uptake capacity
8
120-tma@fe
7
magnetic nanoparticle-embedded
4
nanoparticle-embedded ionic
4
ionic microporous
4
microporous polymer
4
polymer composite
4
composite efficient
4

Similar Publications

Despite recent substantial advances in water treatment, the ability to selectively degrade trace micropollutants in real waters with complex matrix components remains a grand challenge. Here we report rational crafting of graphene oxide (GO)-wrapped defective TiO2 composite catalysts that creates nanoscopic confinement over the TiO2 surface within GO, thereby enabling the selective degradation of micropollutants through effectively excluding natural organic matter (NOM) and anions from the nanoconfined catalytic sites. In contrast to unconfined counterparts, the nanoconfined composite catalysts retain high degradation efficiency when exposed to various concentrations of NOM and anions, even in real water samples.

View Article and Find Full Text PDF

In recent years, oxidoreductase enzymes such as laccases have received considerable attention for their ability to degrade and eliminate organic micropollutants from contaminated water in a process known as enzyme-based wastewater treatment. Thus, methods to produce high laccase activity in water are a point of focus, with white-rot fungi being highlighted as a tool in this context. This study, therefore, explored the applied approach of direct addition of mushroom spawn of the white-rot fungi Pleurotus ostreatus into water and its potential for laccase production under different conditions.

View Article and Find Full Text PDF

The presence of twenty-four emerging organic contaminants (EOCs) from a range of chemical classes including antimicrobial agents, biocides, industrial chemicals, plastic precursors, preservatives and UV filters in sediment and shellfish samples collected from fifteen sampling sites across Sri Lanka (a tropical developing country) was investigated. Sixteen EOCs were detected in sediments at concentrations ranging from 0.32 to 370.

View Article and Find Full Text PDF

As the demand for clean water intensifies, developing effective methods for removing pollutants from contaminated sources becomes increasingly crucial. This work establishes a method for additive manufacturing of functional polymer sorbents with hollow porous features, designed to enhance interactions with organic micropollutants. Specifically, core-shell filaments are used as the starting materials, which contain polypropylene (PP) as the shell and poly(acrylonitrile-co-butadiene-co-styrene) as the core, to fabricate 3-dimensional (3D) structures on-demand via material extrusion.

View Article and Find Full Text PDF

Riverbank filtration: a frontline treatment method for surface and groundwater-African perspective.

Environ Monit Assess

January 2025

Institute of Environmental Engineering and Building Installations, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland.

Riverbank filtration (RBF) has emerged as a crucial and functional water treatment method, particularly effective in improving surface water quality. This review is aimed at assessing the suitability of RBF in regions with limited access to clean water, such as Africa, where it has the potential to alleviate water scarcity and enhance water security. This review used various studies, highlighting the principles, applications, and advancements of RBF worldwide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!