Particleboard panels made with sugarcane bagasse waste-an exploratory study.

Environ Sci Pollut Res Int

CONSTRUCT-LABEST, Faculty of Engineering (FEUP), University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.

Published: February 2023

The reuse of natural fibers, in order to manufacture a new product, is already becoming popular due to the generation of a series of advantages in social areas. Sugarcane bagasse is a set of tangled fibers of cellulose, produced in large quantities due to increased acreage and industrialization of sugarcane resulting from public and private investments in production aimed for the alcohol industry. The aim of this study was to evaluate the feasibility of producing sheet timber manufacture from the sugarcane bagasse, analyzing mechanical strength properties. A form of metal sheet for the molding of 12 specimens based on sugarcane bagasse and industrialized resin was made. Soon after molding, specimens were submitted to a three-point bending test, with the aid of a press. The analysis of the results allowed to conclude that the tensile strength and the modulus of elasticity did not obtain the minimum values recommended by the standard. The tensile strength must be improved to allow panels to be useful for ordinary strength applications.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-021-16907-7DOI Listing

Publication Analysis

Top Keywords

sugarcane bagasse
16
molding specimens
8
tensile strength
8
sugarcane
5
particleboard panels
4
panels sugarcane
4
bagasse
4
bagasse waste-an
4
waste-an exploratory
4
exploratory study
4

Similar Publications

Addressing environmental challenges such as pollution and resource depletion requires innovative industrial and municipal waste management approaches. Cement production, a significant contributor to greenhouse gas emissions, highlights the need for eco-friendly building materials to combat global warming and promote sustainability. This study evaluates the simultaneous use of Sugarcane Bagasse Ash (SCBA) and Stone Dust (SD) as partial replacements by volume for cement and sand, respectively, at varying ratios in eco-strength concrete mixes designed for 28 MPa (ES-28) and 34 MPa (ES-34), emphasizing their economic and environmental benefits.

View Article and Find Full Text PDF

Recombinant expression and characterization of the family 5 cellulase from in BL21-CodonPlus (DE3)-RIPL.

Biochem Biophys Rep

March 2025

Institute of Biotechnology, Bioengineering and Food Systems, Advanced Engineering School, Far Eastern Federal University, Vladivostok, 690922, Russia.

B. velezensis RB. IBE29 is a chitinolytic bacterium originally isolated from agricultural soil of Vietnam.

View Article and Find Full Text PDF

Green synthesis of low-cost graphene oxide-nano zerovalent iron composite from solid waste for photocatalytic removal of antibiotics.

iScience

December 2024

Enviromicrobiology, Ecotoxicology and Ecotechnology Research Laboratory (3E-MicroToxTech Lab), Department of Ecological Studies, University of Kalyani, Kalyani, Nadia 741235 West Bengal, India.

This study develops a graphene oxide-nano zerovalent iron (GO-nZVI) composite for the efficient removal of tetracycline and ciprofloxacin from water. The composite was synthesized using sugarcane bagasse as the matrix for graphene oxide (GO) and Sal leaf extract to reduce iron into nano zerovalent iron (nZVI). Microscopic analysis confirmed multiple GO layers with nZVI particles on their surface, while XRD and Raman spectroscopy verified the crystalline nature of the composite.

View Article and Find Full Text PDF

The search for alternative material sources to conventional ones has had a significant impact on the construction sector today, driven by the implementation of sustainable development policies on a global scale. Alternative cementitious materials, such as agricultural industry by-products, have been introduced to ensure the efficient use of renewable natural resources while promoting a balance between the technical and economic aspects of infrastructure projects. This article provides an overview of research conducted on the use of pozzolans derived from agro-industrial by-products, such as rice husk ash (RHA), palm oil fuel ash (POFA), and sugarcane bagasse ash (SCBA), which have a high content of amorphous silica.

View Article and Find Full Text PDF

A new method was developed to quickly produce carboxymethyl hemicellulose (CM-Hemi) and fluorescent nitrogen-doped carbon dots (N-CDs) from sugarcane bagasse (SB). These materials were then combined with calcium chloride (CaCl₂) to create hydrogel sensors with antibacterial and antifungal properties. The CM-Hemi@Ca-N-CDs hydrogel was effective against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria compared to CM-Hemi@Ca which give no antibacterial activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!