Grey mould caused by Botrytis cinerea leads to severe economic loss on commercial tomato production. Application of beneficial microorganism offers an eco-friendly alternative for mitigation of tomato fungal disease damage, considering negative influences of fungicides. In the present study, an antagonistic Trichoderma afroharzianum isolate TM24 was evaluated for its biocontrol potential on tomato grey mould. The isolate TM24 showed obviously antagonistic effect on B. cinerea mycelium growth and production of glucanase and chitinase. Leaf spraying with spore suspension of isolate TM24 showed a biocontrol efficiency of over 54% against tomato grey mould in greenhouse pot experiment. The activities of plant defense-related enzymes including polyphenol oxidase, phenylalanine ammonialyase, superoxide dismutase, and peroxidase were all increased to varying degrees in tomato leaves after isolate TM24 treatment. Transcriptome analysis showed that, a total of 1941, 1753 and 38 differentially expressed genes (DEGs) were obtained at 24, 48 and 72 hpi, respectively, in tomato leaves pretreated with T. afroharzianum TM24, and then challenged with B. cinerea inoculation. The DEGs were mainly enriched in MAPK signaling pathway and plant hormones signal transduction pathway. Multiple genes that regulated crucial nodes of defense-related pathways, like flavonoid, phenylpropanoid, jasmonic acid and ethylene metabolisms were also identified, which may have positive correlations with the biocontrol potential of isolate TM24 in tomato plants. These promising results provided valuable information on using T. afroharzianum TM24 as a beneficial biocontrol agent in tomato grey mould management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00284-021-02671-x | DOI Listing |
J Fungi (Basel)
December 2024
College of Plant Sciences, Jilin University, Changchun 130062, China.
, the grey mould fungus affecting over 1400 plant species, employs infection cushion (IC), a branched and claw-like structure formed by mycelia, as a critical strategy to breach host surface barriers. However, the molecular mechanisms underlying IC formation remain largely unexplored. In this study, we utilized a forward genetics approach to establish a large T-DNA tagged population of , which contained 14,000 transformants.
View Article and Find Full Text PDFFood Res Int
February 2025
Institute of Food Science and Technology. Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves Avenue, 9500 Porto Alegre, RS, Brazil. Electronic address:
Botrytis cinerea is the causal agent of gray mold, which is one of the most widespread and destructive fungal diseases that compromises the productivity and quality of grapes produced throughout the world. This work aimed to verify, for the first time, the impact of unencapsulated carvacrol and encapsulated in Eudragit® nanocapsules (Eud-Carv NCs) and chia mucilage (Chia-Carv NCs) on mycelial growth and spore germination of B. cinerea.
View Article and Find Full Text PDFChem Biodivers
January 2025
Chuxiong Normal University, Academy of Science and Technology, Chuxiong Normal University, Chuxiong, 675000,China, No. 456 Luchengnan Road, chuxiong, Academy of Science and Technology, 651000, chuxiong, CHINA.
Gray mold disease is caused by B. cinerea, which could severely reduce the production yield and quality of tomatoes. To explore more potential fungicides with new scaffolds for controlling the gray mold disease, ten aldehydes-thiourea derivatives were designed, synthesized and assayed for inhibitory activity against three plant pathogenic fungi.
View Article and Find Full Text PDFPest Manag Sci
January 2025
Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China.
Background: In the realm of plant diseases, those caused by fungi and oomycetes are particularly challenging to manage, resulting in significant economic losses. There exist diverse active substances in natural products and developing them into fungicides holds great significance. At the initial phase of our research, we discovered that Syringa pinnatifolia extract demonstrates broad-spectrum inhibitory activity against phytopathogenic fungi.
View Article and Find Full Text PDFPlant Dis
January 2025
Southwest Forestry University College of Landscape and Horticulture, College of Landscape and Horticulture, Kunming, Yunnan, China;
Rhus chinensis, a deciduous tree of the genus Rhus (family Anacardiaceae), is widely cultivated in China for its medicinal, edible, and ornamental value (Zhang et al., 2022). In April 2022, symptoms of winged leaf dieback disease were observed at Southwest Forestry University in Kunming, Yunnan Province, China (E102°45'42.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!