Globally, plants face large amounts of environmental stresses, which can inhibit their growth rate and element uptake capacity. Droughts are a critical limitation to plant growth in arid and semi-arid areas. Effects of drought stress and post-drought rewatering on the compensatory growth and Cd phytoremediation efficiency of Arabidopsis thaliana were estimated using slight and moderate drought conditions. Results showed compensatory growth can be induced by post-drought rewatering, as manifested by the increased dry weight and photosynthetic efficiency of the species under drought stress (particularly slight stress) as compared to those of the control. Slight stress increased concentrations of Cd in roots and leaves of A. thaliana by elevating its transpiration rate, whereas moderate stress induced the opposite effect. When the species was subjected to slight stress, Cd concentrations in plant tissues surpassed those in the control after rewatering, indicating that post-drought rewatering can compensate for the detrimental impacts caused by slight drought in A. thaliana. At the end of the experiment, slight and moderate drought stresses increased the Cd extraction ability of the species by 48.9% and 12.7%, respectively, compared to the control. This study demonstrates compensatory effects of post-drought rewatering on the Cd phytoextraction capacity of A. thaliana and suggests that suitable water deficit irrigation practices can enhance soil remediation efficiency and simultaneously save water in the field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00128-021-03390-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!