Adult homeostatic visual plasticity can be induced by short-term patching, heralded by a shift in ocular dominance in favor of the deprived eye after monocular occlusion. The potential to boost visual neuroplasticity with environmental enrichment such as exercise has also been explored; however, the results are inconsistent, with some studies finding no additive effect of exercise. Studies to date have only considered the effect of patching alone or in combination with exercise. Whether exercise alone affects typical outcome measures of experimental estimates of short-term visual neuroplasticity is unknown. We therefore measured binocular rivalry in 20 healthy young adults (20-34 years old) at baseline and after three 2-hour interventions: patching (of the dominant eye) only, patching with exercise, and exercise only. Consistent with previous work, the patching interventions produced a shift in ocular dominance toward the deprived (dominant) eye. Mild- to moderate-intensity exercise in the absence of patching had several effects on binocular rivalry metrics, including a reduction in the dominant eye percept. The proportion of mixed percept and the time to first switch (onset rivalry) did not change from baseline across all interventions. Thus, we demonstrate that exercise alone can impact binocular rivalry outcomes measures. We did not observe a synergistic effect between patching and exercise in our data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8543434PMC
http://dx.doi.org/10.1167/jov.21.11.12DOI Listing

Publication Analysis

Top Keywords

visual neuroplasticity
12
binocular rivalry
12
dominant eye
12
exercise
10
shift ocular
8
ocular dominance
8
exercise exercise
8
patching exercise
8
patching
7
exercise impacts
4

Similar Publications

Motion-Onset Visually Evoked Potentials (VEPs) are Amplified in The Deaf.

J Neurophysiol

January 2025

Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6 Canada.

The loss of a sensory modality triggers a phenomenon known as cross-modal plasticity, where areas of the brain responsible for the lost sensory modality are reorganized and repurposed to the benefit of the remaining modalities. After perinatal or congenital deafness, superior visual motion detection abilities have been psychophysically identified in both humans and cats, and this advantage has been causally demonstrated to be mediated by reorganized auditory cortex. In our study, we investigated visually evoked potentials (VEPs) in response to motion-onset stimuli of varying speeds in both hearing and perinatally deafened cats under light anesthesia.

View Article and Find Full Text PDF

Approximately 40% of individuals undergoing anterior temporal lobe resection for temporal lobe epilepsy experience episodic memory decline. There has been a focus on early memory network changes; longer-term plasticity and its impact on memory function are unclear. Our study investigates neural mechanisms of memory recovery and network plasticity over nearly a decade post-surgery.

View Article and Find Full Text PDF

Unlabelled: Neurophysiology studies propose that predictive coding is implemented via alpha/beta (8-30 Hz) rhythms that prepare specific pathways to process predicted inputs. This leads to a state of relative inhibition, reducing feedforward gamma (40-90 Hz) rhythms and spiking to predictable inputs. We refer to this model as predictive routing.

View Article and Find Full Text PDF

Background: Different modes of motor acquisition, including motor execution (ME), motor imagery (MI), action observation (AO), and mirror visual feedback (MVF), are often used when learning new motor behavior and in clinical rehabilitation.

Purpose: The aim of this study was to investigate differences in brain activation during different motor acquisition modes among healthy young adults.

Methods: This cross-sectional study recruited 29 healthy young adults.

View Article and Find Full Text PDF

Lesions of the primary visual cortex (V1) cause retrograde neuronal degeneration, volume loss and neurochemical changes in the lateral geniculate nucleus (LGN). Here we characterised the timeline of these processes in adult marmoset monkeys, after various recovery times following unilateral V1 lesions. Observations in NeuN-stained sections obtained from animals with short recovery times (2, 3 or 14 days) showed that the volume and neuronal density in the LGN ipsilateral to the lesions were similar to those in the contralateral hemispheres.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!