Optical security involving the use of light to achieve distinctive vision effects has become a widely used approach for anticounterfeiting. Holographic multiplexing has attracted considerable interest in multiplexing security due to its high degree of freedom for manipulating the optical parameters of incident laser beams. However, the complex and time-consuming fabrication process of metasurface-based holograms and the sophisticated nature of holographic imaging systems have hindered the practical application of holographic multiplexing in anticounterfeiting. Combining holography with shape memory polymers to construct reconfigurable holograms provides a simple and efficient way for holographic multiplexing. This paper proposes a reconfigurable four-level amplitude hologram fabricated on a heat-shrinkable shape memory polymer using spatially modulated femtosecond laser pulses. Simply by triggering the shape recovery of the polymer through heating, the amplitude modulation of light by the hologram is reconfigured through the shrinking of processed microcrater pixels with three diameters, which enables variation to be achieved in reconstructed holographic images. Examples of holographic multiplexing and data encryption are used to validate the proposed method. The proposed economic and simple approach for holographic multiplexing provides an integrated and single-material solution to packaging and optical security, which has extensive potential in anticounterfeiting and optical encryption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c15012 | DOI Listing |
Biomed Opt Express
January 2025
Warsaw University of Technology, Institute of Micromechanics and Photonics, 8 Sw. A. Boboli St., 02-525 Warsaw, Poland.
A fair comparison of multiple live cell cultures requires examining them under identical environmental conditions, which can only be done accurately if all cells are prepared simultaneously and studied at the same time and place. This contribution introduces a multiplexed lensless digital holographic microscopy system (MLS), enabling synchronous, label-free, quantitative observation of multiple live cell cultures with single-cell precision. The innovation of this setup lies in its ability to robustly compare the behaviour, i.
View Article and Find Full Text PDFSci Rep
January 2025
Applied Electromagnetic Research Center, National Institute of Information and Communications Technology, Nukui-Kitamachi, Koganei, Tokyo, 184-8795, Japan.
As the demand for computational performance in artificial intelligence (AI) continues to increase, diffractive deep neural networks (DNNs), which can perform AI computing at the speed of light by repeated optical modulation with diffractive optical elements (DOEs), are attracting attention. DOEs are varied in terms of fabrication methods and materials, and among them, volume holographic optical elements (vHOEs) have unique features such as high selectivity and multiplex recordability for wavelength and angle. However, when those are used for DNNs, they suffer from unknown wavefront aberrations compounded by multiple fabrication errors.
View Article and Find Full Text PDFSci Rep
January 2025
School of Electronic Science and Engineering, Xiamen University, Xiamen, 361005, China.
Vanadium dioxide (VO) exhibits exceptional phase transition characteristics that enable dynamic manipulation of electromagnetic wave. In this study, a novel design of bilayer isotropic metasurface is introduced. It leverages insulating-to-metallic phase transition of VO to enable broadband holography for terahertz wave.
View Article and Find Full Text PDFNano Lett
January 2025
Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
The complete manipulation of Jones matrix phase-channels using metasurfaces brings forth unparalleled possibilities across diverse wavefront modulation applications. Traditionally, achieving independent control over all four phase-channels usually involves the introduction of chirality with multilayer or three-dimensional metasurfaces. Here, we present a general chirality-free method that relies on polarization base transformation with a planar minimalist metasurface, effectively decoupling the four Jones matrix phase-channels, thereby unleashing the fundamental boundaries imposed by conventional linear or circular polarization bases.
View Article and Find Full Text PDFHolographically designed aperiodic lattices (ALs) have proven to be an exciting engineering technique for achieving electrically switchable single- or multi-frequency emissions in terahertz (THz) semiconductor lasers. Here, we employ the nonlinear transfer matrix modeling method to investigate multi-wavelength nonlinear (sum- or difference-) frequency generation within an integrated THz (idler) laser cavity that also supports optical (pump and signal) waves. The laser cavity includes an aperiodic lattice, which engineers the idler photon lifetimes and effective refractive indices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!