Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study used high-frequency transcranial random noise stimulation (tRNS) to examine how low and high spatial frequency filtered faces are processed. Response times were measured in a task where healthy young adults categorised spatially filtered hybrid faces, presented at foveal and peripheral blocks, while sham and high-frequency random noise was applied to a lateral occipito-temporal location on their scalp. Both the Frequentist and Bayesian approaches show that in contrast to sham, active stimulation significantly reduced response times to peripherally presented low spatial frequency information. This finding points to a possible plasticity in targeted regions induced by non-invasive neuromodulation of spatial frequency information in rapid perception of faces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3758/s13414-021-02384-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!